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ABSTRACT

The efficiencies with which ice crystals at low–intermediate Reynolds numbers collide with supercooled cloud
droplets are determined numerically. Three ice crystal habits are considered here: hexagonal ice plates, broad-
branch crystals, and columnar ice crystals. Their Reynolds numbers range from 0.1 to slightly beyond 100. The
size of cloud droplets range from a few to about 100 mm in radius. The collision efficiencies are determined
by solving the equation of motion for a cloud droplet under the influence of the flow field of the falling ice
crystal. The flow fields of the falling ice crystals were determined previously by numerically solving the unsteady
Navier–Stokes equations. Features of these efficiencies are discussed. The computed efficiencies are compared
with those obtained by previous investigators and improvements are indicated. New results fit better with the
observed riming droplet sizes and cutoff riming ice crystal sizes.

1. Introduction

The collision of supercooled cloud droplets with and
the subsequent freezing of these droplets on ice crystals,
known as the riming process, plays a fundamental role
in the formation of precipitation-sized hydrometeors in
clouds (Pruppacher and Klett 1997; Cotton and Anthes
1989; Johnson et al. 1993). Recent numerical study by
Johnson et al. (1994) indicate that more than 70% of
the rainwater produced in a midlatitude deep convective
storm comes from the melting of graupel and hail. Even
in subtropical thunderstorms, the melting of graupel and
hail accounts for about 50% of the rainwater production
(Lin and Wang 1997). Since graupel and hail themselves
are the products of riming process in clouds, it is logical
to expect that riming rates have a significant impact on
the rain production rates in convective storms.

In addition, riming involves the phase change of water
substance from liquid to solid and hence the release of
latent heat into the surrounding air. In a cloud region
where riming proceeds at a rapid pace, this heating may
become significant enough to influence the thermody-
namic structure and, ultimately, the dynamic behavior
of the storm.

The riming rate hinges on two quantities: the collision
efficiency between ice particles and supercooled drop-
lets, and the coalescence efficiency of the colliding pair.
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The coalescence efficiency is usually assumed to be one
(i.e., 100%) since observations indicate that at temper-
atures lower than 08C a supercooled droplet instantly
turns into ice upon collision with an ice surface. The
collision efficiency, on the other hand, is a complicated
function of ice particle size, shape, density, velocity,
and the droplet size. This paper addresses the deter-
mination of collision efficiencies. Here we shall restrict
our discussion to the collision between pristine ice crys-
tals and supercooled droplets. The riming of graupel
and hail where the collectors are usually larger than
pristine ice crystals will not be considered here.

In order to determine the collision efficiency between
an ice crystal and a water droplet accurately, one either
conducts experimental measurements under a controlled
laboratory condition or performs calculations based on
rigorous theoretical models. The former is a difficult
and often expensive task, and thus far only a few mea-
surements were done over limited ranges of ice particle
size (Sasyo 1971; Sasyo and Tokuue 1973; Kajikawa
1974). On the other hand, theoretical calculations can
be relatively economic to perform compared with ex-
perimental measurements if properly done. The main
obstacles are the accurate formulation and computing
algorithm, and the adequacy of computer resources;
both can be overcome with reasonable efforts. The pres-
ent study is based on theoretical calculations.

Theoretical calculations of collision efficiencies be-
tween ice crystals and cloud droplets have been per-
formed previously by some investigators. Ono (1969)
and Wilkins and Auer (1970) calculated the collision
efficiencies between ice disks and droplets based on
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inviscid flow fields past disks. Pitter and Pruppacher
(1974) and Martin et al. (1981) performed calculations
of the collision efficiency between ice plates and su-
percooled droplets assuming that the flow fields past
hexagonal plates can be approximated by that past thin
oblate spheroids. Schlamp et al. (1975) calculated the
efficiencies with which columnar ice crystals collide
with supercooled droplets assuming that the flow fields
past an ice column can be approximated by that past an
infinitely long cylinder. While these studies contributed
significantly to our early understanding of the onset of
riming process, there is room for improvement. Fur-
thermore, all of these studies assumed that flow fields
are steady, which is not valid for larger ice crystals that
fall in an unsteady attitude (Pruppacher and Klett 1997).

Recently, Ji and Wang (1989, 1991) and Wang and
Ji (1997) performed calculations of the flow fields past
three different shapes of ice crystals: hexagonal ice
plates, broad-branch crystals, and ice columns. The
shapes of ice crystals used in their calculations are more
realistic than those mentioned before. Also, unsteady
features such as eddy shedding were included in the
calculations. These improvements ultimately led to
more accurate computation of flow fields. The present
study is based on the flow fields as determined by Wang
and Ji (1997). Using these fields we calculated the col-
lision efficiencies with which ice crystals of the above
three shapes collided with supercooled droplets. The
details of the formulations, results, and conclusions are
reported below.

2. Physics and mathematics

The theoretical problem of determining the collision
efficiency between an ice crystal and a supercooled
cloud droplet mainly involves the solution of the equa-
tion of motion of the droplet in the vicinity of the falling
ice crystal. Since the motions occur in a viscous me-
dium, air, the effect of flow fields must be considered.
The flow fields around falling ice crystals are compli-
cated and are normally obtained by solving relevant
Navier–Stokes equations governing the flow. The in-
formation of these flow fields is fed into the equation
of motion and the latter is solved (usually by numerical
techniques) to determine the ‘‘critical trajectory,’’ that
is, the trajectory of the droplet that makes grazing col-
lision with the crystal [see, e.g., chapter 14 of Prup-
pacher and Klett (1997) for an explanation of the grazing
trajectory]. Finally, the collision efficiency is calculated
based on the knowledge of the grazing trajectory. In the
following, these steps are described one by one.

a. Flow fields around falling ice crystals

As indicated above, the first step of determining the
collision efficiency is to determine the flow fields around
falling ice crystals. This is done by solving the incom-

pressible Navier–Stokes equations for flow past ice
crystals:

]u ¹P
21 (u · =)u 5 2 1 y¹ u, (1)

]t r

where u is local flow velocity vector, P the dynamic
pressure associated with the flow field, r air density and
n the kinematic viscosity of air. In the context of nu-
merical calculations, this equation is often nondimen-
sionalized by utilizing the following nondimensional
variables:

x u tu`x9 5 , u9 5 , t9 5 ,
a u a1 ` 1

P 2u a` 1P9 5 , Re 5 , (2)
2ru y`

where x (or y, z) is one of three Cartesian coordinates;
a1 the characteristic dimension of the ice particle; u`

the free-stream velocity, which is equal to the terminal
fall velocity of the ice crystal; and Re is the Reynolds
number relevant to the flow. All primed quantities are
nondimensional. Using these dimensionless variables,
we can write the nondimensional Navier–Stokes equa-
tion and the continuity equation as (after dropping the
primes)

]u 2
21 u · =u 5 2=P 1 ¹ u (3)

]t Re

¹ · u 5 0. (4)

The ideal boundary conditions appropriate for the
present problems are

u 5 0 at the surface of the ice crystal, and (5)

u 5 1 · e at infinity, (6)z

where ez is a unit vector in the free stream direction.
The details of the numerical procedure have been given
in a recent paper by Wang and Ji (1997), so they will
not be repeated here. The velocity vectors so obtained
are input into the equation of motion to be described
below.

b. Equation of motion and droplet trajectory

The equation of motion of a cloud droplet of radius
a2 in the vicinity of a falling ice crystal of characteristic
dimension a1 is

2dV d r
m 5 m 5 F 1 F , (7)g D2dt dt

where m is the mass of the droplet, V its velocity, r its
position vector, Fg the buoyancy-adjusted gravitational
force, and FD the hydrodynamic drag force due to the
flow. These two forces are expressed as
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FIG. 1. A schematic explanation of the collision cross section, using
a columnar ice crystal as an example. The hexagon-filled area rep-
resents the collision cross section A, the middle rectangle the cross
section (horizontal projection) of the ice column. The outermost rect-
angle represents the geometrical collision cross section A*.

r 2 rw aF 5 mg , (8)g 1 2rw

where rw and ra are the density of water and air, re-
spectively, and

C ReDF 5 6pha (V 2 u). (9)D 21 224

In order to calculate the drag force (9), we need to input
the local flow velocity u at each time step. That value
comes from the solution of (3).

In order to solve Eq. (7), it is also necessary to specify
an initial condition. The appropriate initial condition
here is the initial horizontal offset y of the droplet from
the vertical line passing through the center of the falling
ice crystal (see Pruppacher and Klett 1997, p. 569).
Needless to say, this offset has to be set at a distance
sufficiently upstream to ensure that the droplet is pro-
gressing in a straight line at the time. In this study the
initial offset was set at 20 radii upstream of the ice
crystal and it was proven adequate for the above-stated
purpose. With this initial condition in place, Eq. (7) can
be solved for V and hence r of the droplet as a function
of time. The latter defines its trajectory.

To determine the collision efficiency, we need to de-
termine the critical initial offset yc of the droplet such
that it will make a grazing collision with the ice crystal.
An initial offset greater than yc would result in a miss,
whereas one smaller than yc would result in a hit. In
the present study, a bisection technique, similar to that
used in Miller and Wang (1989), was used to determine
yc. Once this is done, the next step is determining the
collision efficiency E.

c. Collision efficiency

Since the collector is an ice crystal that is usually not
a sphere, it is important to take a closer examination of
the proper definition of collection efficiency here. The
old definition of collision efficiency based on spherical
symmetry [e.g., Pruppacher and Klett 1997, Eq. (14-1)]
is inappropriate here. The proper definition of E here is
the one given by Wang (1983), namely,

K A
E 5 5 , (10)

K* A*

where K is the collision kernel, K* the geometrical col-
lision kernel, A the collision cross section, and A* the
geometrical collision cross section (see Fig. 1 for a
clearer definition). The relation between the collision
kernel and collision cross section is

K 5 A(V 2 u). (11)

This definition takes care of the nonspherical shape of
the ice crystal and is more general than the usual def-
inition of collision efficiency based on the ‘‘radius’’ of
the collector that is strictly valid for only spheres. Thus

cloud droplets located within A (or K) will be eventually
collected by the ice crystal and turn into rime. Note that
the definition of collision efficiency as given by (10)
assumes that the droplets are of the same size. The ef-
ficiency would vary if we deal with a distribution of
drop sizes, but this is not what we treat here.

In the case of unsteady flow fields, the trajectory of
a droplet starting from a certain initial offset was de-
termined by averaging a few trajectories over a cycle
of eddy shedding periods. This was done for a few cases,
but it was later found to be unnecessary because these
trajectories vary very little as grazing collisions in this
study all occur in the upstream regions where flow fields
are steady. In addition, droplets are massive enough to
defy small fluctuations in the flow fields. This may not
be the case if the collection of submicron particles by
hydrometeors is considered since rear capture may occur
in that case (e.g., Wang et al. 1978; Wang and Jarosz-
czyk 1991) and the unsteady fields in the downstream
would have greater effect.

3. Results and discussion

Ice crystal collectors of three different habits are con-
sidered in this study: columnar ice crystals (approxi-
mated as finite circular cylinders), hexagonal ice plates,
and broad-branch ice crystals. Tables 1, 2, and 3 show
the dimensions of these ice crystals. These are the same
set of ice crystals whose flow fields and ventilation co-
efficients were computed by Wang and Ji (1997) Ji and
Wang (1999), respectively. Figure 2 shows several tra-
jectories of a droplet of 2-mm radius moving around a
falling broad-branch crystal of Re 5 10. Of the eight
trajectories shown here, trajectories 1, 2, 6, 7, and 8 are
misses, whereas trajectories 3, 4, and 5 are hits. Tra-
jectory 4 is the central trajectory, while 3 and 5 are
grazing trajectories.

Note that since the collector ice crystals are not
spheres, the critical initial offset yc does not possess
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TABLE 1. Reynolds numbers, dimensions, and capacitance of co-
lumnar ice crystals in the present study. The quantities are dimen-
sionless.

NRe Radius (mm) Length (mm) Capacitance

0.2
0.5
0.7
1.0
2.0
5.0

10.0
20.0

23.5
32.7
36.6
41.5
53.4
77.2

106.7
146.4

67.1
93.3

112.6
138.3
237.4
514.9

1067
2440

1.3628
1.3628
1.4054
1.4535
1.6511
2.0151
2.5067
3.3959

TABLE 3. Reynolds numbers and dimensions of broad-branch ice
crystals in the present study.

NRe Radius (mm) Thickness (mm)

1.0
2.0

10.0
20.0
35.0
60.0
90.0

120.0

100.0
125.0
350.0
500.0
750.0

1000.0
1250.0
1550.0

15.0
18.0
32.0
40.0
50.0
60.0
65.0
73.0

FIG. 2. Trajectories of a droplet of 2 mm in radius moving in the
vicinity of a falling broad-branch ice crystal at Re 5 10. Trajectories
1, 2, 6, 7, and 8 are misses, and trajectories 3, 4, 5 are hits.

TABLE 2. Reynolds numbers, dimensions, and capacitance of hex-
agonal ice plates in the present study. The quantities are dimension-
less.

NRe Radius (mm) Thickness (mm) Capacitance

1.0
2.0

10.0
20.0
35.0
60.0
90.0

120.0

80.0
113.3
253.3
358.2
473.8
620.0
750.0
850.0

18.0
20.0
32.0
37.0
41.0
45.0
48.0
49.0

0.7298
0.6977
0.6639
0.6485
0.6371
0.6278
0.6221
0.6179

circular symmetry but rather is a function of the azi-
muthal angle. The asymmetry is most easily shown by
the shape of the collision cross section A formed by
connecting yc’s of all angles. Figures 3, 4, and 5 show
examples of these collision cross sections for droplets
of various sizes colliding with the three types of ice
crystals. It is immediately clear that the shapes of the
A’s are more or less similar to the ice crystal cross
sections themselves. When droplets are small, their col-
lision cross sections (and hence the collision efficien-
cies) are usually (but not always) smaller. As the drop-
lets become larger, the collision cross sections become
larger and the shapes are closer to the cross sections of
the ice crystals. This behavior is obviously because of
the inertia of the droplet relative the strength of the
hydrodynamic drag force, a reasoning that has been dis-
cussed in great detail by Pruppacher and Klett (1997).
When droplets are small, their inertias are small com-
pared to the drag and their trajectories are close to the
streamlines of the flow fields, which are generally
curved around the crystal. Thus the shape of the col-
lision cross section would be different from the crystal.
When droplets are larger, their inertia becomes greater
and their trajectories are straighter; hence, the collision
cross sections have shapes closer to that of the crystal.

a. Hexagonal plates

Figures 6, 7, and 8 show the computed collision ef-
ficiencies for the three crystal habits. The case of hex-
agonal ice plates is shown in Fig. 6. The general feature
here is that, at a fixed crystal Reynolds number, the

efficiency is very small when the droplet is small due
to its small inertia, as explained previously. In the cases
of Re 5 1.0 and 2.0, the efficiency drops to very small
value (,1024) for droplets with radii less than 9 mm.
For higher-Re (larger ice crystals) cases, this efficiency
drop is more gradual and there is no sharp cutoff. This
is in contrast with earlier studies where a cutoff at a2

ø 5 mm occurs (e.g., Pitter and Pruppacher 1974; Pitter
1977). Instead, the efficiency remains finite even for
droplets as small as 2.5 mm, which is in good agreement
with Kajikawa’s (1974) experimental results. Recent ob-
servational studies also confirm that many frozen drop-
lets on the rimed ice crystals are smaller than 5 mm.
The reason that some previous field observations in-
dicated the scarcity of frozen droplets with a radius less
than 5 mm on planar ice crystals (e.g., Harimaya 1975;
Wilkins and Auer 1970; Kikuchi and Ueda 1979; and
D’Enrico and Auer 1978) is probably due to the local
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FIG. 3. Shape of collision cross sections for a hexagonal ice plate
at Re 5 20, colliding with supercooled droplets of radius r. The fixed
hexagon is the cross section of the ice plate: (a) r 5 3 mm, (b) r 5
5 mm, (c) r 5 11 mm, and (d) r 5 27 mm.

FIG. 4. Same as Fig. 3 except for a broad-branch crystal at Re 5
35: (a) r 5 5 mm, (b) r 5 9 mm, (c) r 5 15 mm, and (d) r 5 36
mm.

FIG. 5. Same as Fig. 3 except for a columnar ice crystal at Re 5
2.0: (a) r 5 4 mm, (b) r 5 6 mm, (c) r 5 35 mm, and (d) r 5 43
mm.

microstructure of clouds instead of intrinsic collision
mechanism (Pruppacher and Klett 1997).

As the drop size increases, the efficiency increases
rapidly. The efficiency reaches a peak or a plateau, de-
pending on the Reynolds number of the ice crystal, and
then drops off sharply for further increasing drop size.
The drop off of efficiency is apparently due to the in-
creasing terminal velocity of the droplet. When the col-
lector ice crystal and the droplet have about the same
velocity, collision is nearly impossible and the efficiency
becomes very small (Pitter and Pruppacher 1974; Pitter
1977; Martin et al. 1981; Pruppacher and Klett 1997).
The efficiency maxima take the shape of peaks in small-
er-Re cases but become broader plateaus as the ice crys-
tal Re increases, apparently because the larger crystals
can collide with droplets of broader size range and main-
tain fairly high efficiencies. Due to their sizes, smaller
crystals are quickly ‘‘outrun’’ by droplets as droplets
become larger and hence are unable to perform the col-
lision.

b. Broad-branch crystals

Figure 7 shows the collision efficiency for broad-
branch crystals colliding with supercooled droplets. The
main features are similar to those for hexagonal plates.
The collision efficiency for Re 5 1.0 is practically zero,
representing an inability to rime. This cutoff of riming
ability will be discussed further below.

The collision efficiencies of broad-branch crystals are
in general smaller than those of hexagonal plates at the
same Reynolds number. The maximum efficiencies in
the plateau region are about 0.9, unlike the case of hex-
agonal plates, whose maximum efficiencies are near 1.0.
This is probably due to the more open structure of a
broad-branch crystal that would allow the droplet to
‘‘slip through’’ the gap between branches. The width of
the ‘‘plateau’’ is also much narrower than the corre-
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FIG. 6. (a) Collision efficiencies of hexagonal ice plates colliding
with supercooled droplets determined in the present study. The last
data points (at large drop size end) for Re 5 20 to 120 are extrap-
olated. (b) The same as (a) except the abscissa is limited for drop
size up to 10 mm.

FIG. 7. (a) Collision efficiencies of broad-branch crystals colliding
with supercooled droplets determined in the present study. The last
data points (at large drop size end) for Re 5 20 to 120 are extrap-
olated. (b) The same as (a) except the abscissa is limited for drop
size up to 10 mm.

sponding case of hexagonal plate. This is most likely
due to the smaller fall velocity of the broad-branch crys-
tal (as compared to a hexagonal plate at the same Reyn-
olds number) and hence is outrun by a droplet sooner.

If the above reasoning holds true, then it implies that
stellar crystals, which have even more open structure,
probably have collision efficiencies similar to or smaller
than those of broad-branch crystals. However, the same
cannot be said for the case of dendrites since they have
more intricate small branches that may afford them to
capture droplets with higher efficiency.

c. Columnar ice crystals

Collision efficiencies of columnar ice crystals collid-
ing with supercooled droplets are shown in Fig. 8. The
general features here look very similar to those in Fig.

6 despite the difference in Reynolds number ranges in
these two cases. This is because the difference in Re is
a superficial one since the Reynolds numbers of the
falling columns are determined based on their radii in-
stead of lengths. Had the latter been used, the two sets
of Re’s would be much closer in magnitude.

The plateaus in Fig. 8 are not as flat as those in Fig.
6 but exhibit a downhill slope toward larger drop size.
Although the exact cause is not known, this is likely
due to the higher asymmetry of a column than a plate.
The effect of this asymmetry would become more pro-
nounced as the drop size increases.

d. Finite versus infinite cylinders

It is educational to examine the differences between
the collection efficiency results of finite and infinite cyl-
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FIG. 8. (a) Collision efficiencies of columnar ice crystals colliding
with supercooled droplets determined in the present study. (b) The
same as (a) except the abscissa is limited for drop size up to 10 mm.

FIG. 9. Comparison between the collision efficiencies for finite
cylinders (present results) and infinite cylinders (Schlamp et al. 1975)
for Re 5 0.5, 1.0, 5, and 20.

inder approximations of columnar ice crystals so that
we can assess the validity of the infinite cylinder ap-
proach that was used by several studies before (e.g.,
Schlamp et al. 1975). Figure 9 shows two sets of col-
lection efficiency curves, one for finite and the other for
infinite cylinders, for Re 5 0.5, 1.0, 5.0, and 20.0. For
the cases of Re 5 0.5 and 1.0, we see that the finite
cylinders have higher efficiencies than the infinite ones.
The difference is greater for Re 5 0.5 and becomes
smaller for Re 5 0.1. For the cases of Re 5 5.0 and
20.0, the two sets of collection efficiencies are almost
on top of each other for drop sizes smaller than 30 mm.
The differences become more pronounced for larger
drops. The enhanced efficiencies of the infinite cylinders
may be due to the artificial effect of the superposition
technique used by Schlamp et al. (1975) and hence prob-
ably do not reflect the real effect of the infinite length
assumption.

The above paragraph states that the discrepancies be-

tween the two sets of curves are more important when
the columns are small and become less significant when
column size (and hence Reynolds number) increases.
This is to be anticipated because, in the present study,
smaller columns have aspect ratios that are much dif-
ferent from infinite long cylinders; therefore, the col-
lision efficiencies would also show greater differences.
For larger columns, the aspect ratios are closer to those
of infinite cylinders and hence the collision efficiencies
are also closer to the latter.

In short, using infinite cylinder approximation in
treating the collision between columnar ice crystals and
supercooled drops is valid when the drop size is between
a few micrometers and about 30 mm, and when the ice
column Reynolds number is greater than 5. Since the
flow field around an infinitely long cylinder is easier to
compute than that of finite cylinders, this approximation
may be useful when computing resource is of concern.

When the drop size becomes smaller than a few mi-
crometers, the infinite cylinder model underpredicts the
collision efficiencies for the same reason discussed in
section 3a regarding hexagonal plate results.

e. Riming cutoff

Earlier observational studies indicated that there
seems to exist a cutoff size of ice crystals below which
riming cannot occur (Ono 1969; Wilkins and Auer 1970;
Harimaya 1975). Since riming is due to the collision
between ice crystals and supercooled droplets, the cutoff
would occur at a crystal size where the collision effi-
ciency is zero. Earlier theoretical studies of Pitter and
Pruppacher (1974) and Pitter (1977) put the riming cut-
off size of planar ice crystals at 300 mm, which seemed
to agree with observations at the time. However, recent
studies indicate riming cutoff sizes smaller than this
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FIG. 10. Cut off riming ice crystal sizes as extrapolated by the present results. For broad-branch
crystals, the data point for crystal radius 2.5 mm was ignored when obtaining the best fit.

TABLE 4. Observed critical riming size. The code after the crystal habit is the Magono and Lee (1966) classification of natural snow
crystals.

Crystal habit
Wilkins and Auer

(1970)
Reinking

(1979)
Bruntjes et al.

(1987)

Hexagonal plate (Pla)
Broad-branch crystal (Plc)
Columnar crystal (Cle)
Long solid column (Nle)

—
—

l 5 100 mm, d 5 40 mm
l 5 100 mm, d 5 30 mm

—
d 5 275 mm

—
—

d 5 150 mm
d 5 240 mm

l 5 125 mm, d 5 40 mm
—

value (Devulapalli and Collett 1994; Collett and Xu
1999, personal communication). Results of collision ef-
ficiencies computed in the present study can be used to
predict the cutoff riming crystal size. This is done by
plotting the maximum collision efficiency (the peak
point of each curve in Figs. 6–8) as a function of crystal
size for each crystal habit, as shown in Fig. 10. The
point where the extrapolated curve intersects with the
x axis (where E 5 0) indicates the cutoff size of ice
crystal below which riming would not occur. Using this
method, we determine that the riming cutoff size is 35
mm for columnar ice crystals, 110 mm for hexagonal
plates, and 200 mm for broad-branch crystals. These
values are close to the observations of Wilkins and Auer
(1970), Reinking (1979), and Bruntjes et al. (1987), as
summarized in Table 4.

4. Conclusions and outlooks

The collision efficiencies of three types of ice crystals
colliding with supercooled water drops are computed

and presented above. The main improvements in the
present study over previous studies are as follows.

1) More realistic ice crystal shapes are adopted, espe-
cially the finite length of the columns and the broad-
branch crystals whose efficiencies have never re-
ported before.

2) More accurate flow fields, including the 3D and un-
steady features, are used to determine the grazing
trajectories.

The improvements have been demonstrated by the more
accurate prediction of the captured droplet sizes and the
cutoff riming crystal sizes. We believe the improved
collision efficiency values will lead to more accurate
growth-rate calculations of ice particles in clouds.

The results presented in this paper pertain to relatively
small and pristine ice crystals colliding with small su-
percooled droplets, so they are mainly applicable to ini-
tial stages of riming process when ice particles have not
grown too much. When riming has been going on for
a longer time, the ice crystal gradually loses its pristine



15 APRIL 2000 1009W A N G A N D J I

shape. However, as long as the basic shape of the ice
crystal in question is still discernable, we believe the
present results are still useful for estimating the riming
efficiency as the flow fields would not differ too much.
As riming goes further, eventually the original shape of
the ice crystal becomes unrecognizable. The pristine ice
assumption no longer applies at this stage.

As indicated before, the coalescence of the super-
cooled drop with the ice surface is assumed to be 100%,
so that the case where droplets may bounce off from
the ice surface is not considered. It is a much more
complicated task to determine theoretically the riming
rates of larger ice particles such as graupel and hail,
where particles are relatively large and may fall in a
zigzag attitude.
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