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ABSTRACT

The ventilation coefficients for columnar, hexagonal plate, and broad branch ice crystals falling in air are
computed by first solving numerically the convective diffusion equation for water vapor density to obtain its
profile around these ice crystals and then determining the total vapor flux on the surface of the crystal. The
ratio of this flux to the flux on a stationary crystal gives the ventilation coefficient. The local flow velocity
profiles around the falling crystals necessary for specifying the convective term in the convective diffusion
equation were obtained previously by numerically solving the unsteady Navier–Stokes equations subject to
appropriate crystal-shaped boundary conditions. Ventilation coefficients obtained in this way are illustrated as
a function of the Schmidt and Reynolds numbers and are also fitted by empirical expressions. Applications of
these ventilation coefficients are discussed.

1. Introduction

In order to determine the diffusional growth rate of
cloud and precipitation particles, it is necessary to take
into account the fact that these particles are moving
relative to the air. This relative motion causes the air to
flow around the crystal in a complicated way, which in
turn influences the distribution of water vapor around
the crystal. Since the diffusional growth rate of the par-
ticle is determined by the vapor density gradient, it is
obviously influenced by the motion. This effect on the
growth (or evaporation if the air is subsaturated) of
cloud and precipitation particles is known as the ven-
tilation effect. Due to this effect, a falling hydrometeor
will grow (or evaporate) faster than when it is stationary
relative to the air. This is due to the enhancement of
the mean vapor density gradient around the hydrome-
teor. The magnitude of enhancement is given by a factor
called the ‘‘mean ventilation coefficient’’ defined as
(Pruppacher and Klett 1997)

(dm/dt)
f 5 , (1)v (dm/dt)0

where the numerator and the denominator represent the
growth rate of the hydrometeor with mass m under mov-
ing and stationary conditions, respectively.
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This paper is concerned with the ventilation effect on
falling ice crystals in atmospheric clouds. Unlike the
more thoroughly studied cases of water droplets (see
Pruppacher and Klett 1997, chap. 13, for a review), there
exists little information for ice crytstals. The mean ven-
tilation coefficient can be either measured experimen-
tally in the laboratory or computed theoretically. Ex-
perimental measurements, especially for ice crystals, re-
quire sophisticated equipment and are difficult to per-
form, and thus far only a few direct measurements have
been done for ice spheres and hexagonal ice plates
(Thorpe and Mason 1966), and some indirect infor-
mation has been inferred from experimental studies of
snow crystal growth (Takahashi et al. 1991). Theoretical
computations of the ventilation coefficients have been
carried out by Brenner (1963), who obtained analytical
solutions of the convective diffusion equation for infi-
nitely thin circular disks, and by Masliyah and Epstein
(1971) and Pitter et al. (1974), who computed numer-
ically the ventilation coefficients of thin oblate spheroids
of various axis ratios used for approximating hexagonal
plates.

The present paper reports results obtained by the au-
thors also based on numerical techniques similar to Mas-
liyah and Epstein (1971) and Pitter et al. (1974) but
without using the thin oblate spheroid approximation
for hexagonal plates. Instead, the true shape of hexag-
onal plates is used directly. In addition, the ventilation
coefficients for falling columnar and broad-branch ice
crystals are also computed. The three types of crystals
considered in the present study are the same as those
in Wang and Ji (1997; see their Fig. 1). The mathematics
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TABLE 1. Reynolds numbers, dimensions, and capacitance of co-
lumnar ice crystals in the present study. The quantities are dimen-
sionless.

NRe Diameter Length Capacitance

0.2
0.5
0.7
1.0
2.0
5.0

10.0
20.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

2.85
2.85
3.08
3.33
4.44
6.67

10.00
16.67

1.3628
1.3628
1.4054
1.4535
1.6511
2.0151
2.5067
3.3959

and physics of the problem and the numerical methods
employed to obtain solutions are given in the following
sections.

2. Physics and mathematics

The theoretical problem of determining the ventila-
tion coefficients for falling ice crystals is basically a
convection diffusion problem for water vapor around
the crystals. The convective diffusion equation appro-
priate for this situation is

]rv 25 D ¹ r 2 V · =r , (2)v v v]t

where rv is vapor density, Dv the diffusion coefficient
of water vapor in air, and V the local air velocity vector.
The boundary conditions are

r 5 r at the surface of the crystalv vs (3)5r 5 r far away from the crystal,v v `

where rvs and rv` are two constants representing the
vapor density at the surface of and far away from the
crystal, respectively. Unlike the case of spheres where
the inner boundary can be easily written down as the
surface where r 5 a (a radius of the sphere), the surface
of an ice crystal cannot be easily expressed mathemat-
ically.1 For the present study, the boundary conditions
are specified numerically.

Equation (2) is written in dimensional form. To fa-
cilitate the numerical calculations, this equation is non-
dimensionalized by introducing the following nondi-
mensional quantities:

 r 2 rv v `f 5
r 2 rvs v ` x9 5 x/a

 (4)t9 5 tV /a`

V9 5 V/V`
N 5 2aV /D . Pe ` v

All the left-hand side quantities are dimensionless. The
variable x (or y, z) is one of the three Cartesian coor-
dinates, t the time, V` the free stream velocity (or the
air velocity far away from the ice crystal surface), a the
radius of the crystal (measured from the center to one
of the furthest tip), and NPe the Peclet number. Using
the new dimensionless variables, Eq. (2) becomes

1 Wang and Denzer (1983) and Wang (1987, 1997) have found
some simple expressions that can be used to represent the shape of
some ice crystals, but they have not been applied to the present study.
These expressions are mostly for two-dimensional shapes, while the
present study requires three-dimensional expressions. New three-di-
mensional expressions are given in a coming paper.

]f 2
25 ¹ f 2 V · =f, (5)

]t NPe

and the boundary conditions (3) become

f 5 1 at the surface of the crystal
(6)5f 5 0 far away from the crystal.

Equations (5) and (6) are the nondimensional set of
equations that are to be solved numerically. While the
first (inner) boundary condition can be applied in a
straightforward manner, some considerations have to be
given before the second (outer) boundary condition can
be implemented in the actual computations. The ideal
theoretical outer boundary is normally put at r → `,
which is obviously impossible to do in a real numerical
scheme on which the present study is based. Thus, some
finite outer boundary surfaces have to be devised suf-
ficiently far from the crystal to replace the ideal one.

There are additional considerations for setting the
boundary conditions. First of all, the solution of the
convective diffusion equation (2) requires the knowl-
edge of local air velocity vector at each point of the
numerical grid. In the present study these velocity vec-
tors are obtained from the numerical solutions of the
time-dependent Navier–Stokes equations for incom-
pressible flow past ice crystals as reported recently by
Wang and Ji (1997). Thus, it is necessary for consistency
of precision that we use a numerical grid that is either
the same or smaller than the one used in Wang and Ji
(1997) for flow field calculations. We choose to use the
same grid and hence the same boundary surfaces for
the present study. The locations of the outer boundaries
are given in Table 1 of Wang and Ji (1997).

Second, while the second condition in (6) can be ap-
plied at the upstream and lateral outer boundaries, it
will encounter difficulty at the downstream outer bound-
ary in the cases where the flows are unsteady. Due to
the restriction of limited computing resource and hence
the finite downstream boundary, the requirement of a
constant f at this distance is most likely unrealistic.
Here we replace this condition by the following:

]f
5 0. (7)

]z
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TABLE 2. Reynolds numbers, dimensions, and capacitance of hex-
agonal ice plates in the present study. The quantities are dimension-
less.

NRe Diameter Thickness Capacitance

1.0
2.0

10.0
20.0
35.0
60.0
90.0

120.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

0.2250
0.1770
0.1265
0.1034
0.0863
0.0725
0.0640
0.0576

0.7298
0.6977
0.6639
0.6485
0.6371
0.6278
0.6221
0.6179

TABLE 3. Reynolds numbers and dimensions of broad-branch ice
crystals in the present study. The quantities are dimensionless.

NRe Diameter Thickness

1.0
2.0

10.0
20.0
35.0
60.0
90.0

120.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

0.15
0.14
0.0914
0.080
0.0667
0.060
0.052
0.047

This simply means that we require the f field to be
continuous at the downstream boundary surface. A sim-
ilar condition for velocity had been used by the authors
for solving the flow field problem and worked well
(Wang and Ji 1997), and, as it turned out, so does this
one.

Once the f profile is determined, the growth rate of
the falling ice crystal (without considering the coupling
of latent heat released or consumed) can be calculated
using

dm
5 2 D =f · dS, (8)R vdt s

where the integration is to be carried out over the surface
of the ice crystal S. On the other hand, the growth rate
of a stationary ice crystal is given by the classic elec-
trostatic analog:

dm
5 24pCD (r 2 r ), (9)v vs v `1 2dt

0

where C is the capacitance of the ice crystal (see Prup-
pacher and Klett 1997). Hence in order to calculate the
growth rates of stationary ice crystals, it is necessary
to have the values of their capacitance.

For columnar ice crystals, which are approximated
by finite circular cylinders in this study, we used
Smythe’s (1956, 1962) and Wang et al.’s (1985) for-
mulation to calculate the values of capacitance. The
dimensions and the capacitance of the cylinders so de-
termined in this study are given in Table 1. For the
capacitance of hexagonal plates we used the formulation
of McDonald (1963), who measured the capacitance of
various conductors cut in the shape of snow crystals.
The theoretical values of C for hexagonal plates of small
thickness may be written as

2 3 0.91a 1 1 DS
C 5 , (10)1 2p S

where a is the radius (measured from the center to one
of the edges), S the area of the basal plane, and DS the
area difference between the hexagon and a circle with
the same radius. The dimensions and the capacitance of

the hexagonal plates calculated according to this for-
mula are given in Table 2.

Unfortunately, there are no accurate values of either
measured or theoretically calculated capacitance avail-
able for broad-branch crystals. Thus in this case, we
compute the growth rate of stationary broad-branch
crystals directly by numerically solving the (noncon-
vective) diffusion equation first and then using (1) to
determine the ventilation coefficient. The dimensions of
the broad-branch crystals involved in the present study
are given in Table 3.

When the flow is unsteady, the computed ventilation
coefficient will differ a little bit at different time steps.
The final value of the coefficient is taken as the average
value over one eddy shedding cycle. Since the eddy
shedding occurs mainly in the downstream, its influence
on the coefficient is not very large, typically smaller
than 10%.

The numerical scheme (including the grid and the
iteration and interpolation techniques) used in the pres-
ent study is identical to that of Wang and Ji (1997) for
obtaining the flow fields around falling crystals. Readers
are referred to this article for details.

3. Results and discussion

As mentioned previously, the ventilation coefficients
of three different ice crystal habits of various dimen-
sions (as listed in Tables 1, 2, and 3) are computed
according to the method described in section 2. The
atmospheric pressure and temperature are assumed to
be P 5 800 hPa and T 5 288C. It may seem unnec-
essary to define P and T for the calculations of the
ventilation coefficients as they are controlled strictly by
hydrodynamics. But the pressure and temperature do
affect the values of several nondimensional character-
istic numbers to be introduced below and, therefore,
need to be specified.

Figure 1 shows an example of vapor density field
around a stationary columnar ice crystal. The field ob-
viously possesses symmetry with respect to the crystal
since no motion is involved here. Similar distributions
can also be seen in Wang et al. (1985) for potential
fields around finite cylinders. Once the motion is intro-
duced, however, the symmetry disappears, and the re-
sulting vapor density fields show enhanced gradients in
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FIG. 1. Water vapor density distribution around a stationary ice
column at NRe 5 0.2. (a) Length view. (b) End view. The vapor density
field is normalized so that the density is 100 on the surface. The
contour levels are (from outside) 2, 10, 20, 30, 40, 50, 60, 70, 80,
and 100 (surface). The contour level 90 is not shown to avoid over-
crowding of curves.

FIG. 2. Water vapor density distribution around a falling ice column
at NRe 5 2.0. (a) Length view. (b) End view. The contour levels are
(from outside) 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, and 100 (surface).
The contour level 90 is not shown to avoid overcrowding of curves.

the upstream and relaxed gradients in the downstream,
as illustrated by Figs. 2 and 3 for columnar crystals
falling at Reynolds numbers 2 and 10, respectively.
Comparison of these two figures clearly shows that the
higher the Reynolds number, the more pronounced the
asymmetry of the vapor density fields and the greater
the enhancement of the upstream gradients. Figure 4

shows the vapor density fields around falling broad-
branch crystals at Reynolds number 2. The main fea-
tures are essentially the same as the two previous figures.

For higher Reynolds number cases where the flow
fields become unsteady [see Wang and Ji (1997) for
examples of these flow fields], the vapor density fields
also become unsteady, but the main feature of front
enhancement and rear relaxation of vapor density fields
remain the same.

The mean ventilation coefficient is then calculated
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FIG. 3. Water vapor density distribution around a falling ice column
at NRe 5 10.0. (a) Length view. (b) End view. The contour levels are
(from outside) 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, and 100 (surface).
The contour level 90 is not shown to avoid overcrowding of curves.

using (8), (9), and (1), and the results are summarized
in Fig. 5. The horizontal axis is a dimensionless number,
X, defined as

X 5 (NScv)1/3(NRe)1/2, (11)

where NScv is the Schmidt number of water vapor (NSc

air kinematic viscosity/water vapor diffusivity), and NRe

the Reynolds number of the falling ice crystal. It is seen
that the functional dependence of f v on X is similar to
that found by previous investigators [see Pitter et al.
(1974) for a summary]. The results of Thorpe and Ma-

son (1966) and Pitter et al. (1974) are also plotted for
comparison. Pitter et al. (1974) used thin oblate spher-
oids of axis ratio 0.05 to approximate hexagonal plates
and determined their flow fields and ventilation coef-
ficients. The appropriate corresponding case in our re-
sults is the hexagonal plate at X ; 3.85. It is seen here
that their result is greater than the present result by about
10%. The difference is probably due to the different
aspect ratio and the somewhat different shape of cross
section of the crystals. On the other hand, their results
are close to the present results for broad-branch crystals.
Thorpe and Mason’s (1966) experimental results are
greater than both our and Pitter et al.’s results but are
close to that obtained by Masliyah and Epstein’s (1971)
numerical results for oblate spheroids of axis ratio 0.2.
Apparently the axis ratio is one parameter that must be
considered in characterizing the ventilation coefficients.
Unfortunately, there are no experimental measurements
that we are aware of at present for verifying other re-
sults.

The three curves in Fig. 5 representing the present
results can be fitted by the following empirical expres-
sions:

2f 5 1.0 2 0.00668(X /4) 1 2.39402(X /4)v

3 41 0.73409(X /4) 2 0.73911(X /4) (12)

for columnar ice crystals of 0.2 # NRe # 20;

2f 5 1.0 2 0.60420(X /10) 1 2.79820(X /10)v

3 41 0.31933(X /10) 2 0.06247(X /10) (13)

for simple hexagonal plates of 1.0 # NRe # 120; and

f v 5 1.0 1 0.354 63(X/10) 1 3.553 38(X/10)2 (14)

for broad-branch crystals of 1.0 # NRe # 120.
In the present study, NScv is held at a constant value

(50.63), so what the figure shows is essentially the
variation of the ventilation coefficient with the Reynolds
number. Figure 6 shows this relation. Here we see that
the dependence is nearly linear. However, while it is
unlikely that the linear trend in the columnar case can
be continued much further, it is likely that the slope will
become smaller at higher Reynolds number.

Figure 6 also shows that, at a fixed Reynolds number,
the columnar ice crystal has the highest ventilation co-
efficient among the three habits. This is probably due
to the fact that the characteristic dimension of the col-
umn used in defining its Reynolds number is its radius
instead of its length, so a columnar crystal of a small
Reynolds number actually represents a long crystal and
hence high fall velocity. This high velocity (higher than
both the hexagonal plate and broad-branch crystal at the
same NRe) is the main reason for its higher ventilation
coefficient. It is less obvious why the ventilation co-
efficient of a broad-branch crystal is higher than a hex-
agonal plate at the same NRe, but again this may be
explained by looking at the dimension of the crystals.
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FIG. 4. Water vapor density distribution around a falling broad-branch crystal at NRe 5 2.0. (a) Central cross-sectional view. (b) Diagonal
cross-sectional view. The contour levels are (from outside): 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, and 100 (surface). The contour level 90
is not shown to avoid over-crowding of curves.

FIG. 5. Computed mean ventilation coefficients as a function of
the dimensionless parameter X defined in Eq. (11). Experimental re-
sults of Thorpe and Mason (1966) and numerical results of Pitter et
al. (1974) are also plotted for comparison.

Due the more skeletal structure of the broad-branch
crystal, its bulk density is smaller than a simple hex-
agonal plate. Hence, at the same Reynolds number, the
dimension of the broad-branch crystal is larger than a

hexagonal plate, and the surface area that can be sub-
jected to the ventilation effect is also greater.

Takahashi et al. (1991) performed wind tunnel studies
of the diffusional growth of free falling snow crystals
between 238 and 2238C. They deduced some venti-
lation coefficients from the growth rates and their results
(taken from their empirical relations) are plotted in Fig.
6 for comparison. Since the habits and aspect ratios of
their crystals are different from the present, it is im-
possible to make exact comparisons. However, the mag-
nitudes of the ventilation coefficients for their two sector
cases are rather close to the present results for NRe be-
tween 0 and 20, although the functional dependence
appears to be different. The different functional depen-
dence may be because the habit had changed signifi-
cantly during the growth in their experiments, and the
curve represents the coefficients for a particular contin-
uously growing crystal rather than that for a crystal of
fixed habit. The coefficients for their dendrite case are
smaller than all other cases presented in Fig. 6, which
seems to be intuitively expected since the open structure
of dendrites would make them to fall slower than other
habits and hence smaller f v.

4. Application to heat ventilation problem

Although the above ventilation calculations were
based on the formulation of water vapor diffusion,
which is a mass transfer process, the results are also
applicable to the ventilation of heat for the same falling
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FIG. 6. Computed mean ventilation coefficients as a function of the Reynolds number of the
falling ice crystal assuming the Schmidt number 5 0.63.

ice crystals since the mathematical equations involved
(including the boundary conditions) are entirely the
same except that the vapor density is replaced by tem-
perature and the vapor diffusivity is replaced by the
thermal conductivity of air. In the calculations of the
diffusional growth rates of ice crystals, where the heat
diffusion is coupled by vapor diffusion, it is adequate
to set f v 5 f h, where the latter represents the mean
ventilation coefficient of heat. Detailed discussions on
the equivalence of these two phenomena and the cou-
pling of them in determining the diffusional growth rates
of ice crystals are given by Pruppacher and Klett (1997).

5. Conclusions

In the above, we have shown the calculations of ven-
tilation coefficients of falling ice crystals of columnar,
hexagonal plate, and broad-branch habits based on the
convective diffusion theory of water vapor. The con-
vective part of the mass transfer was computed using
the detailed flow fields, computed by solving numeri-
cally the corresponding Navier–Stokes equations for the
falling ice crystals. The result shows that the ventilation
effect can be significant for the diffusional growth of
ice crystals. A falling ice crystal may grow at a rate
several times faster than a stationary one. Similarly, the
heating or cooling due to the falling ice crystal’s growth
or evaporation can also be several times as large as a

stationary one. Clearly both effects have a significant
impact on the evolution of clouds that contain ice crys-
tals, especially the cirrus clouds, where nearly all par-
ticles are ice crystals.
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