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ABSTRACT

The unsteady flow fields around falling columnar ice crystals, hexagonal ice plates, and broad-branch crystals
are simulated by numerically solving the time-dependent Navier–Stokes equations appropriate for these ge-
ometries in the primitive equation form. A predictor–corrector method and a quadratic interpolation for convective
kinematics (QUICK) scheme are applied on nonuniform grids to determine the velocity fields. The ice crystals
are held in fixed orientation but time-dependent behaviors such as eddy shedding are allowed to occur by
imposing an initial perturbation with a magnitude 30% of the free-stream velocity. The computed flow fields
cover a Reynolds number range from 0.1 to about 200, being slightly different for different crystal habits.
Examples of velocity fields are illustrated. The computed drag coefficients for cylinders agree with experimental
values to within a few percent, while those for hexagonal plates agree with experimental values and previous
calculations by Pitter et al. to less than 15% even though the aspect ratios are different. The drag coefficients
for broad-branch crystals are higher than those for hexagonal plates at the same Reynolds numbers. Special
features of flow passing through the branch gaps of broad-branch crystals suggest that it may be possible to
use a creeping flow assumption to treat flow passing through spaces in complicated dendritic crystals.

1. Introduction

Any quantitative investigation of the formation of
clouds and precipitation cannot avoid dealing with the
complicated motion of particles such as cloud droplets,
raindrops, ice crystals, graupel, and hailstones. These
particles move in a viscous medium, the air, and thus
create complicated flow fields around themselves. These
fields have important effects on the growth of the par-
ticles themselves. For example, due to the existence of
these flow fields, the collision efficiencies of two spher-
ical drops can be significantly different from one that
would have been the case if the two spheres are colliding
in a vacuum due to pure inertial collision. The same can
be said for any pairs of cloud and precipitation particles.
Since the collisional growth is a very important mech-
anism responsible for the precipitation particle forma-
tion, especially in the warm rain process, it goes without
saying that the flow fields have significant impact on
both the time and magnitude of the precipitation de-
velopment.

But the knowledge of flow fields is important even
for the growth of small cloud particles. These particles
have relatively small collision efficiency with each oth-
er, and their growth is mainly achieved by the diffusion
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of ambient water vapor toward them. The flow fields
created by their motion influence the vapor density gra-
dients, which, in turn, determine the diffusional growth
rates of these particles. The amount of the influence,
called the ventilation factor, is strongly controlled by
the flow field associated with the falling particle (Prup-
pacher and Klett 1978, chapter 13). This factor is also
important in determining the evaporation rates and the
surface temperatures of large falling hydrometeors, al-
though their growth rates depend also on the collisional
process.

In principle, the flow fields can be obtained either by
experimental measurements or theoretical calculations.
Experimental methods are preferred if feasible and if
they can be done properly. The reality is, however, that
it is very difficult to measure the flow fields for a wide
variety of cloud and precipitation particles, which vary
greatly in size and shape, and for a wide range of at-
mospheric conditions. The other option is to perform
theoretical calculations to see if the calculations can be
done based on realistic models and if they can be done
efficiently. The advent of fast computers makes this op-
tion a viable choice and the calculations can often be
done at a relatively economic cost compared to exper-
imental measurements. The present study is based on
the theoretical approach.

2. Review of previous studies

Most of the previous work on the theoretical studies
of hydrodynamics relevant to cloud and precipitation
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particles has been reviewed and summarized by Prup-
pacher and Klett (1978) and Clift et al. (1978). Among
the earlier work relevant to this area are the analytical
and semi-empirical studies of Stokes (e.g., Happel and
Brenner 1965; Yih 1969), Goldstein (1929), and Carrier
(1953) regarding flow past rigid spheres, and Hadamard
(1911) and Rybczinski (1911, see Lamb 1945) regarding
fluid spheres. Refinements of these early studies were
made by many fluid dynamicists that are too numerous
to cite here. However, it was soon realized that these
analytical solutions can only be applied to a limited
range of real atmospheric conditions; in order to produce
results that are useful to cloud physics, it is necessary
to prescribe initial and/or boundary conditions that are
more complicated and closer to realistic cloud environ-
ment. It would be very difficult to solve these problems
analytically, and indeed they are most conveniently
solved by numerical methods. Thus, Jenson (1959), Le
Clair et al. (1970), and Pruppacher et al. (1970) started
to perform numerical calculations of fields for incom-
pressible flow past rigid and liquid spheres.

Spherical problems, especially those of low Reynolds
number range, are largely relevant only to cloud drops.
The majority of other cloud and precipitation particles
are prominently nonspherical. Large raindrops have rel-
atively flat bottoms and round tops that resemble ham-
burger buns. Columnar ice crystals, dendrites, and con-
ical graupel are certainly far from being spherical. There
is clearly a need to determine the flow fields around
nonspherical hydrometeors. A few cases of these have
been carried out by some investigators. Again, more
realistic solutions were obtained mainly by numerical
methods. For instance, the flow past infinitely long cyl-
inders, which are often used to approximate flow fields
around ice columns, were obtained by numerous re-
searchers (e.g., Thom 1933; Dennis and Chang 1969,
1970; Hamielec and Raal 1969; Takami and Keller
1969; Schlamp et al. 1975.) The numerical flow fields
around thin oblate spheroids, used to approximate hex-
agonal ice plates, were obtained by Rimon and Lugt
(1969), Masliyah and Epstein (1970), and Pitter et al.
(1973).

All the studies mentioned above have two things in
common: First, they all treated steady-state flow fields,
which are only applicable to motion of cloud and pre-
cipitation particles at low Reynolds numbers, and sec-
ond, they treated only two-dimensional problems. In that
Reynolds number range, the particles fall steadily and
therefore the flow fields around them are also indepen-
dent of time. However, when these particles grow larger,
they start to show unsteady fall behavior and create
unsteady flow fields characterized first by the shedding
of eddies in the downstream and then by the eventual
turbulent eddies when the Reynolds numbers become
sufficiently large. Undoubtedly, if we are to understand
the unsteady motion of these particles and their effect
on the cloud growth, we need to determine these un-
steady flow fields. This amounts to solving the unsteady

Navier–Stokes equations with appropriate initial and
boundary conditions. In addition, the flow fields around
most real ice crystals are actually three-dimensional in
nature even when the flow is steady. For example, the
steady flow past a hexagonal plate does not really pos-
sess azimuthal symmetry as would be the case for a
circular disk or a thin oblate spheroid. The flow past a
cylinder of finite length is even more asymmetrical due
to the presence of a cylindrical surface and two plain
end surfaces. When the flow becomes unsteady, of
course, the asymmetry becomes even more pronounced.

We have recently developed some numerical tech-
niques and used them to compute the flow fields around
a few types of nonspherical ice particles in the low–
medium (from 0.1 to about 150) Reynolds number
range. The results appear to be very encouraging. We
believe that the same techniques can be extended to
more complicated cases. Some preliminary results of
our computation have been reported recently (Ji and
Wang 1990, 1991). This paper presents more complete
results and the intercomparison of the results between
the flow fields of different particles. We have also used
the computed flow fields of these ice particles to de-
termine their collisional and diffusional growth rates and
the results will be reported elsewhere.

3. The physics and mathematics of unsteady flow
fields around nonspherical ice particles

a. Streamfunction versus momentum equation
formulation

In this section, we shall discuss the conceptual setup
of the problems for unsteady flow past nonspherical ice
crystals and the numerical schemes that we used to solve
them. In the treatment of two-dimensional steady-state
incompressible flow problems, it is common to for-
mulate the problems in terms of a scalar streamfunction
c. The benefit of doing so is that only a single dependent
scalar variable needs to be solved and the components
(e.g., u, y) of the flow velocity vector V can be derived
from c. On the other hand, using the original momentum
equation formulation would require solving two depen-
dent variables.

Unfortunately, the attractiveness of the streamfunc-
tion formulation disappears for three-dimensional flows.
While it is still possible to define a streamfunction, this
function will be a vector instead of a scalar one (e.g.,
Anderson et al. 1984). This means that three separate
component equations of the streamfunction need to be
solved instead of one. Thus there is no advantage to the
streamfunction formulation over the original momentum
equations. In the present study, the momentum equation
formulation is used.

b. The incompressible Navier–Stokes equations and
the initial and boundary conditions

We shall treat three relatively simple ice crystal
shapes, namely, the columnar ice crystals (approximated
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FIG. 1. The three types of ice crystals considered in this study.

FIG. 2. The general configuration of the theoretical problem. Ice
crystals are assumed to fall with their long axes in the horizontal
direction.

FIG. 3. The initial perturbation imposed on the steady flow field
in order to generate time-dependent flow behavior. The magnitude of
perturbation in region A and B is 30% of the free-stream velocity,
but the directions of the perturbations are opposite.

by finite circular cylinders), hexagonal ice plates, and
broad-branch crystals. Figure 1 shows a schematic
sketch of these three types of crystals. The quantity a
represents the ‘‘radius’’ of the ice crystals as defined in
the figure. We shall also assume that these ice crystals
fall with their broad dimensions oriented in the hori-
zontal direction, which is known to be the common fall
orientation of many medium-sized ice crystals (Prup-
pacher and Klett 1978). It is known that large ice crys-
tals also exhibit zigzag fall attitude, but this is not sim-
ulated here due to the limitation of computer resource.
The schematic configuration of the theoretical problem
considered here is shown in Fig. 2.

To facilitate the numerical analysis, we first introduce
the dimensionless variables

x V tzV z`x9 5 , V9 5 , t9 5 ,
a zV z a`

P 2zV za`P9 5 , Re 5 , (1)
2rzV z n`

where x (or y, z) is one of three Cartesian coordinates,
V is the fluid velocity, V` the free-stream velocity equal
to the terminal fall velocity of the ice crystal, P the
dynamic pressure, and n the kinematic viscosity of the
fluid. Here, Re is the Reynolds number relevant to the
flow. All primed quantities are nondimensional. Using
these dimensionless variables, we can write down the
nondimensional Navier–Stokes equation and the con-
tinuity equation as (after dropping the primes)

]V 2
21 V·=V 5 2¹P 1 ¹ V, (2)

]t Re

=·V 5 0. (3)

The ideal boundary conditions appropriate for the
present problems are

V 5 0 at the surface of the ice crystal, and (4)

V 5 1·e at infinity, (5)z

where ez is the unit vector in the general flow direction.
In real numerical computations, of course, the domain
is always finite and the condition (5) can only be taken
to mean that the velocity is constant at an outer bound-
ary that is sufficiently far away from the crystal. It is
difficult at present to determine from purely theoretical
grounds how far the distance should be in order to be
‘‘sufficiently far.’’ We did this by trial and error, and
the outer boundary is considered far enough when the
computed results do not change within a few percents
as we move the boundary out. Similar treatment was
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FIG. 4. The nonuniform grid used for numerically solving the Na-
vier–Stokes equations for flow past a columnar ice crystal. (a) Broad-
side view. (b) End view.

TABLE 1. Outer boundaries of the computational domains for the
three crystal cases. The radius is 1.

Boundaries
Columnar

crystal
Hexagonal

plate
Broad-branch

crystal

Upstream
Lateral (lengthwise)

(end-on)
Downstream

12.7
25.5
23.5
63.0

3.3
6.74
6.86

14.3

1.7
10.10
11.09
15.27

done for all outer boundaries. Table 1 shows the loca-
tions of the upstream, downstream, and lateral bound-
aries for determining the numerical flow fields for the
three cases.

While condition (5) is approximately valid in the up-
stream and lateral boundaries, it is usually not valid in
the downstream boundaries. This is due to the fact that
at higher Reynolds number ranges as investigated here,
the shedding of eddies may occur. The disturbances of-
ten propagate downstream for a long distance. Thus the

condition at the downstream boundary is replaced by a
weaker condition, ]V/]z 5 0.

The pressure field can be determined from the Na-
vier–Stokes equation at all boundaries except at the
downstream boundary where the condition ]P/]z 5 0
is used. Since we are dealing with unsteady flow here,
we also need initial conditions to close the equations.
The initial conditions are P 5 0 and V 5 1·ez every-
where at t 5 0 except at the surface of the crystal. The
condition on the surface is V 5 0 (nonslip condition)
at all t.

c. Generation of unsteady flow features

Although the Navier–Stokes equation (2) is written
as a time-dependent equation, this does not mean that
the computational results will always result in time-
dependent flow features such as the shedding of eddies.
Indeed, Dennis and Chang (1970) has shown that for
flow past two-dimensional cylinders starting with sym-
metric initial conditions, the eddy shedding does not
occur even at high Reynolds numbers. In order to gen-
erate these time-dependent, or unsteady, features, it is
necessary to implement an asymmetric initial pertur-
bation field. There are many ways of implementing this
perturbation. For example, Braza et al. (1986) achieved
this on a two-dimensional cylinder by performing a ro-
tation of the cylinder along its axis. In the present study,
we achieve this by implementing a velocity perturbation
of magnitude 0.3V` in the downstream region imme-
diately behind the crystal to the steady-state solutions
as shown in Fig. 3. The directions of the perturbation
are opposite to each other in regions A and B, so as to
form a shear along the central plane of the flow. As we
shall see later, at high enough Reynolds numbers, this
perturbation will generate a periodic eddy-shedding pat-
tern in the simulated flow. On the other hand, the per-
turbation will be damped out in a short time if the Reyn-
olds number is low.

4. The numerical scheme

To solve Eqs. (2) and (3) with the appropriate initial
and boundary conditions, we adopt a numerical ap-
proach utilizing the finite difference method. It is also
necessary to set up a mesh grid. Due to the more com-
plicated shapes of these ice crystals, it is decided that
the simplest way to set up grids is to use the Cartesian
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TABLE 2. Dimensions of columnar ice crystals treated in the
present study. Units: dimensionless.

Re Diameter (d) Length (L)

L

d

0.2
0.5
0.7
1.0
2.0
5.0

10.0
20.0
40.0
70.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

2.85
2.85
3.08
3.33
4.44
6.67

10.00
16.67
12.58
25.32

1.43
1.43
1.54
1.67
2.22
3.33
5.00
8.33
6.29

12.66

TABLE 3. Dimensions of hexagonal ice plates treated in the present
study. Units: dimensionless.

Re Diameter (d) Thickness (h)

h

d

1.0
2.0

10.0
20.0
35.0
60.0
90.0

120.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

0.225
0.177
0.1265
0.1034
0.0863
0.0725
0.064
0.0576

0.1125
0.0885
0.06325
0.0517
0.04315
0.03625
0.032
0.0288

TABLE 4. Dimensions of broad-branch crystals treated in the
present study. Units: dimensionless.

Re Diameter (d) Thickness (h)

h

d

1.0
2.0

10.0
20.0
35.0
60.0
90.0

120.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

0.15
0.14
0.0914
0.080
0.0667
0.060
0.052
0.047

0.075
0.07
0.0457
0.040
0.033
0.030
0.026
0.0235

coordinate system. In order to prescribe the inner bound-
ary conditions with adequate precision, the grid spacing
near the crystal surface has to be small. On the other
hand, the grid spacing far from the crystal can be larger
to save computing time. This results in nonuniform grids
used in the present study, as shown in Fig. 4.

As indicated before, the primitive velocity formula-
tion of the Navier–Stokes equation is adopted for this
study. The velocity at each time step is obtained by a
predictor–corrector method. First, the velocity predictor
V* is determined by solving the equation

nV* 2 V 2
n n 2 n1 (V ·=)V 5 ¹ V , (6)

Dt Re

where Vn is the velocity solved at time step n and Dt
is the time increment. The pressure at time step n 1 1
is then given by

=·V*
2 n11¹ P 5 (7)

Dt

(e.g., Peyret and Taylor 1983). Finally, the velocity at
time step n 1 1 is determined by

n11V 2 V*
n115 2=P . (8)

Dt

The scheme of velocity interpolation at each time step
is the modified QUICK (Quadratic Upstream Interpo-
lation for Convective Kinematics) scheme with second
order accuracy developed by Leonard (1979) and ex-
tended by Davis (1984) and Freitas et al. (1985). Since
we use the nonuniform mesh grid here, the uniform grid
formulation given by Leonard (1979) cannot be used.
Instead, we adopted the formulation of Freitas et al.
(1985) for nonuniform grid but modified to suit our
three-dimensional flow cases. The details of the for-
mulation and the stability criterion are given in Ji and
Wang (1990, 1991).

The Poisson equation for pressure, Eq. (7), is solved
by the standard successive over-relaxation (SOR) meth-
od as described in Peyret and Taylor (1983) and An-
derson et al. (1984).

The time step Dt used in the integration varies from

0.015 to 0.03, depending on the local grid spacing, such
that the stability criterion is satisfied. The smallest grid
spacing was Dx equals 0.0775. The largest grid size used
was 59 3 75 3 89. Naturally, a larger grid size will
result in better accuracy but will increase the comput-
ing time considerably. The typical computing time for
10 000 time steps is on the order of a few hours on a
CRAY X/MP computer. The computation on a CRAY-2
computer is somewhat faster. It appears that the SOR
scheme in solving the pressure equation is the main
bottleneck of the computation. The grid size used in this
study represents a compromise between accuracy and
available computing resources.

5. Results and discussion

The size, aspect ratios, and Reynolds numbers of the
columns, hexagonal plates, and broad-branch crystals
are listed in Tables 2, 3, and 4, respectively. Their di-
mensions are chosen to overlap those adopted by some
previous work (Schlamp et al. 1975; Pitter et al. 1973,
1974; Pitter 1977; Miller and Wang 1989) so that the
results can be compared. In the following we shall dis-
cuss the results for each crystal type separately.

a. General features of the flow fields around falling
columnar ice crystals

As mentioned earlier, this type of crystal is approx-
imated by a circular cylinder of finite length. Because
of the finite length, the cylinder, as well as the flow field
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FIG. 5. Streak pattern, or ‘‘snapshot’’ field, of massless tracer particles for flow past an ice column. (a) Broad-side view, Re 5 40. (b)
End view, Re 5 40. (c) Experimental photograph of a falling short cylinder at Re 5 40. (d) Broad-side view, Re 5 70. (e) End view, Re
5 70. (f) Experimental photograph of a falling short cylinder at Re 5 70 (photo courtesy of Dr. K. O. L. F. Jayaweera).
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FIG. 6. Drag coefficients for flow past cylinders of various d/l ratios. The solid line and the
triangles are for infinitely long cylinders. It is seen that as the Re increases, the cylinder becomes
longer and the drag coefficient becomes closer to that of the infinitely long cylinder.

FIG. 7. Velocity fields of flow past a hexagonal ice plate at Re 5 2. The cross-section location is indicated by the dashed line in the
upper right corner of the figures. Vectors represent projections of the 3D vectors onto that cross-sectional plane.
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FIG. 8. Velocity fields of flow past a hexagonal ice plate at Re 5 20.
The cross-section location is indicated by the dashed line in the upper
right corner of the figures. Vectors represent projections of the 3D vectors
onto that cross-sectional plane.
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FIG. 9. The unsteady flow field past a hexagonal ice plate at Re 5
140.

around it, is no longer cylindrically symmetric. The di-
mensions and aspect ratios of the cylinders chosen for
the computation are shown in Table 2 and are the same
as those given by Schlamp et al. (1975) for Reynolds
numbers between 0.2 and 20, and by Jayaweera and
Mason (1965) for Reynolds numbers 40 and 70. Several
higher Reynolds numbers cases were also computed for
the purpose of checking, but the details of these will
not be discussed here. The aspect ratios of the cylinders
specified by Schlamp et al. (1975) are taken from the
actual samples whose diameter-length relations were re-
ported by Auer and Veal (1970). For the higher Reyn-
olds number cases, the Jayaweera and Mason’s (1965)
cylinder dimensions are also used here because their
results are the only experimental data available for ver-
ification purpose for free-falling finite cylinders. In all
cases, the ice columns become longer as compared to
the diameters as the Reynolds number increases.

Previous experimental studies of both two- and three-
dimensional flow past circular cylinders indicated that
the flow remains steady up to Re ø 50 (e.g., Kovasznay
1949; Jayaweera and Mason 1965). In Ji and Wang
(1990, 1991), it was shown that even with the 0.3V`

perturbation, the periodic shedding of eddies did not
develop in the simulated flow field when Re 5 40. In-
stead, it just produced a transient disturbance that quick-
ly dissipated in about 45 time steps. On the other hand,

when the Reynolds number increases to 70, the flow
past the same cylinder developed a full-fledged periodic
eddy shedding. This indicates that the current scheme
is capable of simulating the eddy shedding phenomenon
correctly. Thus no perturbation was necessary for com-
puting the flow fields with Re # 50.

Since many of the features of the flow past finite
cylinders have been discussed in one of our previous
papers (Ji and Wang 1991), only a brief summary and
some highlights are given here. It is sufficient to say
that the numerical results reproduced the features of flow
fields observed in the laboratory experiments of Jay-
aweera and Mason (1965), such as the pyramidal wake
region for Re # 40 and the shedding of eddies for flow
in greater Reynolds number range. Figure 5 gives a
pictorial comparison between the computed massless
tracer streaks and experimental photographs of Jayaw-
eera and Mason (1965). It is seen here that there are
good similarities between the two sets of pictures.

Figure 6 shows the comparison between the com-
puted drag coefficients with those obtained by other
theoretical and experimental results. The drag coeffi-
cient is defined as

D
C 5 , (9)D 2rV a`

where D is the drag force and a is one-half of the cross-
sectional area of the cylinder normal to the flow direc-
tion. Obviously, the drag coefficients of the present re-
sults differ from the results for infinite long cylinders.
The difference is greater for smaller Reynolds number.
This is due to the fact that the dimensions of columns
for lower Reynolds numbers are such that their shapes
differ more from an infinitely long cylinder. On the other
hand, columns for higher Reynolds numbers are closer
to the shape of an infinitely long cylinders, hence their
drag coefficients are closer to each other. This implies
that the theoretical results obtained by previous inves-
tigators regarding the behavior of columnar ice crystals
are probably reasonable for the case of larger ice col-
umns but not for short columns. The collection effi-
ciencies of small droplets by columns and ventilation
factors of falling ice columns computed based on our
new scheme did show such trends and will be reported
elsewhere. The discrepancies exist mainly for Re , 10.
It is seen here that the coefficients are practically the
same as that of infinitely long cylinders for Reynolds
number . 10. The drag coefficients calculated here can
be fitted by the expression

2log C 5 2.44389 2 4.21639A 2 0.20098A10 D

31 2.32216A , (10)

where

log Re 1 1.010A 5 . (11)
3.60206
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FIG. 10. Velocity fields of flow past a broad-branch ice crystal at Re 5 2. The cross-section location is indicated by the dashed line in
the upper right corner of the figure.

This formula is valid within the range 0.2 , Re , 100.
It fits the computed data to within a few percent. Note
that in reality the drag coefficient is also a function of
the aspect ratio of the cylinder, which is not explicitly
represented in Eq. (10); hence, strictly speaking, this fit
is only applicable to those cases indicated in Table 2.
But judging from the smooth behavior of this relation,
we feel that it is probably applicable to columnar crys-
tals with dimensions satisfying Auer and Veal’s (1970)
relations and with flow Reynolds numbers in the afore-
mentioned range. It would be desirable to find a relation
of CD as a function of the aspect ratio. However, more
calculations are needed to establish this relation. This
is not done for the present study due to the constraint
of computing resources.

b. General features of the flow fields around falling
hexagonal ice crystals

Pioneering numerical work on the flow fields around
falling ice plates were performed by Pitter et al. (1973),
who used thin oblate spheroids to approximate planar
ice crystals. In the present study, we use the actual hex-
agonal shape to model the ice plates whose dimensions

are given in Table 3. The corresponding range of the
Reynolds numbers is from 1 to 120. However, additional
cases were also computed as needed to demonstrate the
flow fields.

Examples of steady flow fields around hexagonal
crystals are shown in Figs. 7 and 8, which represent
cases of Reynolds numbers 2 and 20, respectively. These
are steady flow cases. The flow fields look similar to
those obtained by Pitter et al. (1973).

The flow field of Re 5 1 (figure not shown) does not
indicate the existence of standing eddies. But there are
already standing eddies formed in the wake region of
the crystal at Re 5 2. This is consistent with Pitter et
al. (1973), who indicated that the eddies start to appear
at Re 5 1.5. As expected, the eddies become larger at
higher Reynolds numbers.

Experiments of Willmarth et al. (1964) showed that
at Re $ 100, eddy shedding occurs in the downstream
of a falling disk. Such unsteady behavior can be sim-
ulated using the same technique as we did for the finite
cylinders. Figure 9 shows the simulated unsteady flow
fields for flow past hexagonal plates at Re 5 140. The
initial perturbation introduced (after the steady-state so-
lution has been obtained) was again 0.3V`, which has
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FIG. 11. Velocity fields of flow past a broad-branch ice crystal at Re 5 20. The cross-section location is indicated by the dashed line in
the upper right corner of the figure.

been proven to be adequate for kicking up the shedding.
It can be seen that the flow field is obviously asymmetric
due to the shedding. Detailed analysis of how shedding
starts has not been done yet, but it is expected that the
shedding would start at a particular corner and the point
of detachment would rotate around on the plate.

It must be stressed here that the flow fields described
above are computed assuming that the plate position is
fixed with respect to the incoming air flow; that is, the
angle between the c axis (normal to the plate basal sur-
face) of the plate and the general flow is kept at 908.
In reality, falling plates are known to perform zigzag
motion, which implies that the angle is not constant but
is actually a function of time. In order to simulate such
zigzag motions, one has to use very small time steps
for adequate accuracy. Due to the constraint of com-
puting resources, these cases are not yet simulated here
but are currently being studied by us. However, it is
expected that the above results should give good ap-
proximations, especially when the variations of the an-
gles are not large.

There seems to be no experimental measurements
available for flow properties past hexagonal plates. Will-
marth et al.’s (1964) results for flow past circular plates
are the closest cases for the comparison purpose. But

here the comparison is difficult to make because the
aspect ratios of the computed and experimental results
are different. For the same reason the comparison be-
tween our present results and those of Pitter et al. (1973)
is also difficult to make. The aspect ratio of the plates
calculated here varies with the Reynolds number, where-
as the thin oblate spheroids in Pitter et al. (1973) have
fixed aspect ratios (h/d 5 0.05), and therefore the com-
puted results cannot be compared directly except for the
case of Re 5 20. At this Re, the drag coefficient obtained
by Pitter et al. (1973) agrees with the present result for
hexagonal plate to within 1%. Willmarth et al.’s (1964)
results do not have the case of Re 5 20, and the two
cases that are close have rather different aspect ratios
(h/d 5 0.0033 for Re 5 15.7 and 0.00167 for Re 5
29.1). In other Reynolds number cases, the differences
are somewhat larger possibly due to the different aspect
ratios (and, of course, somewhat different shapes). But
even there, the largest error that occurs at Re 5 140 is
less than 15%. Thus it seems fair to conclude that the
general trend and the magnitude of CDs are indeed quite
similar for the present and Pitter et al. (1973) cases;
hence the predictions made by Pitter et al. (1973) seem
to be generally valid.
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FIG. 12. Velocity field of flow past a branch gap of a broad-branch
ice crystal at Re 5 2. The cross-section location is indicated by the
dashed line in the upper right corner of the figure. FIG. 13. Velocity field of flow past a branch gap of a broad-branch

ice crystal at Re 5 20. The cross section is indicated by the dashed
line in the upper right corner of the figure.

c. General features of the flow fields around falling
broad-branch crystals

Broad-branch crystals are also a common form of ice
and snow crystals. We have not seen any quantitative
measurements or calculations before about the flow
fields around a falling broad-branch crystal, so the pres-
ent results may be the first of their kind. Needless to
say, it would be desirable to have experimental mea-
surements in the future to compare with our computa-
tional results.

Because broad-branch crystals are basically planar
crystals just like the ice plates discussed in the previous
section, the flow fields around them are expected to be
similar (albeit different in magnitudes) to that around
ice plates. This in indeed the case as shown by the
present calculations. The major difference between a
plate and a broad-branch crystal, of course, is in the
gaps between the branches of the latter. Figures 10 and
11 show the computed flow fields around falling broad-
branch crystal for Re 5 2.0 and 20, respectively. There
are already standing eddies in the flow field of Re 5
2.0 although they are so small as to be just barely dis-
cernible. The sizes of the eddies are smaller than those
for flow past plates at the same Reynolds number. This
may be understood by noting that the gaps between

branches would allow the fluid to go through more easily
and therefore reduce the tendency of creating return
flow, which constitutes the eddies.

The flow in the gap region is of particular interest
since this phenomenon has never been studied before.
Figure 12 shows a special cross section of the flow field
that reveals the nature of this regional flow. The flow
converges slightly before entering the gap region, be-
comes relatively straight in the gap, and then diverges
slightly upon leaving it. The magnitude of the flow ve-
locity is relatively small.

The standing eddy size again increases with increas-
ing Reynolds number as shown by Fig. 13 for Re 5
20. The same covergent–straight–divergent behavior oc-
curs in the gap region, as shown in Fig. 12, only more
evident because of the slighter higher velocity than the
Re 5 2.0 case. However the velocity in this region is
still small when compared to the general flow. This
generally small velocity phenomenon seems to indicate
that the flow in the gap regions can be approximated as
creeping flow. If this observation can be substantiated
by future studies, then it implies that we can use the
creeping flow theory to treat the even more intricate
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FIG. 14. Drag coefficients as a function of Reynolds number for
flow past hexagonal plates and broad-branch crystals.

case of flow going through dendritic crystals where the
gaps are even smaller.

Finally, Fig. 14 shows the variation of drag coeffi-
cients as a function of Reynolds number for flow around
hexagonal plates and broad-branch crystals. The drag
coefficient for a broad-branch crystal is greater than that
for a plate at the same Reynolds number. The drag co-
efficients for very thin oblate spheroids as calculated by
Pitter et al. (1973) is also plotted for comparison. The
drag coefficients for the hexagonal plates and broad-
branch crystals computed in the present study can be
fitted by the empirical formulas that use the similar func-
tional form as that of Pitter et al. (1973) for circular
plates.
Hexagonal plates:

64
0.945C 5 (1 1 0.078 Re ) (12)D 1 2p Re

Broad-branch crystals:

64
0.887C 5 (1 1 0.142Re ), (13)D 1 2p Re

which are valid for the range of Re between 0.2 and
150. Both fit the calculated values of drag coefficients
to within 1.5%. There are presently no experimental data
available to verify the calculations of flow fields for
flow past broad-branch crystals.

6. Conclusions

In this study we showed that the unsteady flow fields
around three types of falling ice crystals can be deter-
mined by numerically solving the time-dependent Na-
vier–Stokes equations. Nonuniform Cartesian grids

were used due to the complexity of the crystal geometry,
which always results in truly three-dimensional flow
fields. Comparisons of present numerical results with
experimental data, when available, show good quanti-
tative agreement between the two. This indicates that
the present technique is capable of realistically simu-
lating the flow fields around falling ice crystals. This
also gives us some confidence of using the computed
flow fields to derive other cloud physical quantities that
depend strongly on the hydrodynamic effects, such as
the collision efficiencies of small particles (cloud drop-
lets, aerosol particles, etc.) with these ice crystals and
the ventilation factors that influence the evaporation,
cooling, and diffusional growth of these crystals. The
computations of these quantities were also performed
and will be reported in a later paper.

The present results represent an ongoing attempt to
more accurately simulate the flow fields around falling
ice crystals and hence are far from perfect. In particular,
the ice crystals in the present study are all held fixed
with respect the air flow; thus the zigzag motions of
some larger crystals are not simulated. We are hoping
that this deficiency can be removed in the near future.
Considerable computing resource will be necessary for
this type of study since the required time step to achieve
reasonable accuracy is likely to be rather small. How-
ever, judging from the recent impressive advances of
computer speed, such computations will probably soon
become possible.

What are really lacking are experimental measure-
ments of flow fields around falling ice crystals that are
necessary to verify the theoretical results. Ideal equip-
ment for this purpose will be a vertical wind tunnel such
as the one used by Mitra et al. (1990). Hopefully, mea-
surements of this kind will become available in the fu-
ture.
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