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ABSTRACT

Mathematical expressions based on earlier ideas of the author are given to describe the three-dimensional
surfaces of hexagonal ice crystals and conical graupel and hail particles. In the former class, the expressions
closely parallel the expression for prolate spheroid but the cross section is transformed into a hexagon by an
expression designed previously. A special transformation containing a preset constant, «, is implemented so that
the three-dimensional, instead of two-dimensional, surface of the crystal is described. In the case of conical
particles with elliptical cross sections, the equation that describes a conical body of revolution is modified to
describe conical bodies with elliptical cross sections.

1. Introduction

In a recent paper (Wang 1997) the author extended
some of his earlier ideas (Wang and Denzer 1983; Wang
1987) to develop some formulas to represent the two-
dimensional shapes of hexagonal planar ice crystals and
ice columns and three-dimensional shapes of bullet ro-
settes and spatial dendrites. Since the representations of
the hexagonal crystals (both columnar and planar) in
Wang (1997) were still confined to two dimensions, they
were unsatisfactory because real crystals are three-di-
mensional. It is now found that by combining the rep-
resentations for the planar and columnar crystals we can
form an expression to represent both columnar and pla-
nar ice crystals in three dimensions.

In addition, in an earlier paper (Wang 1982) the author
developed an expression to represent the two-dimen-
sional shape of conical hydrometeors (graupel, hail, and
raindrops). In that paper, it was mentioned that the three-
dimensional conical body of revolution could be ob-
tained easily by rotating the 2D curve about the z axis.
The horizontal cross section of such a body of revolution
is a circle. Real graupel and hail particles, however,
often have elliptical cross sections (Sturniolo et al. 1995;
C. A. Knight and A. Waldvogel 1995, personal com-
munication) and hence it is desirable to have formulas
to represent such particles. This turned out to be an easy
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task; only slight modification of the previous formula
is necessary. The details of the expressions for both
categories of particles are given in the following sec-
tions.

2. Mathematical expression for hexagonal crystals

Let us start by describing the process of obtaining the
expression of a simpler shape—a right circular cylin-
der—and then we shall generalize that expression to
represent hexagonal columns and plates.

A right circular cylinder (i.e., one with the two end
surfaces perpendicular to the cylindrical side surface)
can be obtained by rotating a rectangle about an axis.
Wang (1997) gives the expression representing a rect-
angle as

2 2 2x z x
1 1 1 « 2 5 1, (1)

2 2 21 2a c a

where x and z are the common Cartesian coordinates;
a and c are the half-lengths in the x and z direction,
respectively; and « is an adjustable positive parameter
that can be set as small as we wish (but never equal to
zero) to closely fit the sharp corners of a rectangle.
Larger values of « would result in ‘‘rounded’’ corners,
while smaller values produce sharp corners. For regular
purposes, it may be sufficient to set « 5 1025.

It is now easy to generate the right circular cylinder
from the rectangle as represented by (1) by simply ro-
tating it about an axis. If we now let the length be in
the vertical z direction, then the cylinder is given by the
following expression (see Fig. 1):
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FIG. 1. A circular cylinder generated by Eq. (2).

2 2 2 2x 1 y z z
1 1 « 2 1 5 1. (2)

2 2 21 21 2a c c

This is the expression representing a right circular cyl-
inder to a high degree of precision if « is set to be small
enough. The cross section of the cylinder in (2) is very
close to a circle of radius a. The ‘‘equator’’ of the cyl-
inder is slightly bulging but only by an amount of the
order «.

To turn this circular cylinder into a hexagonal column
of length c, all we need to do is to transform the circular
cross section into a hexagon. Wang (1987) has given
this transformation as

a → a 2 A[sin2(3w)]B, (3)

where the expression is in 2D polar coordinates and w
is the angular coordinate. Here A and B are adjustable
parameters that change the shape of the cross section.
Replacing the a in Eq. (2) with the transformation in
(3) would then give a column of finite length c with
hexagonal cross section, except it will become an ex-
pression with mixed coordinates. Thus, it is necessary
to either transform (3) into Cartesian coordinates or
transform the final result into spherical coordinates. This
is done in the following.

a. Cartesian coordinates representation

We note that

sin(3w) 5 3 sinw cos2w 2 sin3w

so that

2
2 2 3 33(a sinw)(a cos w) a sin w

2sin (3w) 5 2
3 3[ ]a a

2 2 2y (3x 2 y )
5 , (4)

2 2 3(x 1 y )

where we have utilized the fact that in polar coordinates

x 5 a cosw
(5)5y 5 a sinw.

Thus, by putting (3) into (2) but changing the resulting
equation into the Cartesian form, the expression for a
column of hexagonal cross section is given by

2 2 2 2(x 1 y ) z z
1 1 « 2 1 5 1. (6)

2 2 21 2B c c2 2 2y (3x 2 y )
a 2 A

2 2 35 6[ ](x 1 y )

b. Spherical coordinates representation

To express (6) in spherical coordinates, we use the
conventional metrics

x 5 r sinu cosw
y 5 r sinu sinw (7)

z 5 r cosu,

where r is the radial, u the zenith angular, and w the
azimuth angular coordinate, respectively. By substitut-
ing the x, y, and z in (6) by (7), we get

2 2r cos u 
1 2

2 2 2r sin u  c 
5 , (8) 2 B 2 2 2{a 2 A[sin (3w)] } r cos u 1 1 « 2

2c 

which is the desired expression.
The parameters that needed to be specified in order

to generate the hexagonal cross-sectioned particle are
a, c, A, and B (the parameter « is considered to be
preset). Once these four parameters are specified, both
the size and shape of the particle are completely fixed.
The relative lengths of a and c determine whether the
particle looks more planar or columnar. If c is greater
than a, then the particle is more ‘‘columnar.’’ Converse-
ly, if a is greater than c, then it looks more ‘‘planar.’’
The parameters A and B determine the shape of the cross
section, as explained in Wang (1987, 1997). Figures 2,
3, and 4 give three examples of the ice particles specified
by (6) or (8). Figure 2 represents a hexagonal ice column
while Fig. 3 represents a hexagonal ice plate. The only
difference between the two is the length parameter c.
Figure 4 represents the shape of a broad-branch crystal
of the same thickness as the ice plate in Fig. 3 but of
a different cross section. The readers are referred to the
two earlier papers (Wang 1987, 1997) for more detailed
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FIG. 2. A short hexagonal column generated by Eq. (6) with a 5
1, c 5 1, A 5 0.1339, and B 5 0.397. Circular dots represent the
data points computed from (6). They are connected by lines to show
the prism surfaces of the ice crystal. Note that (6) also generates
points on the basal (top and bottom) surfaces, which are not shown
here to avoid confusion.

FIG. 4. A broad-branch crystal generated by (6) with a 5 1, c 5
0.2, A 5 23, and B 5 1.

FIG. 5. Definitions of the coordinate system and various quantities
appeared in Eq. (9). Solid curve is an axial cross section of a conical
body. Dashed curves (1) and (2) are generating and limiting ellipses,
respectively, as given in Wang (1982).

FIG. 3. A hexagonal plate generated by (6) with a 5 1, c 5 0.2, A
5 0.1339, and B 5 0.397.

descriptions of various cross-sectional shapes and how
to generate them.

It is emphasized here that Eqs. (6) and (8) represent
not only the prism surfaces but also the basal surfaces
as well. The points on the basal surfaces in Figs. 2, 3,
and 4 are not shown for the sake of clarity. The degree
of flatness of both surfaces is controlled by the param-
eter «. The smaller « is, the closer the prism and basal
surfaces to real ‘‘planes.’’

The surface and cross-sectional areas and volumes of
the particles generated by Eqs. (6) and (8) can be easily
obtained. The method of calculating the cross-sectional
area of the particle is given in Wang and Denzer (1983)
and Wang (1987). The volume of the ice crystal is sim-
ply the cross-sectional area times its length, c. The sur-
face area is the sum of the basal planes (52 3 cross-
sectional area) plus the area of the prism surface
(5length 3 the perimeter of the cross section). The

perimeter length of any shape represented by (3) can be
determined by the integral r dw, where r represents2p∫0

the expression in (3).

3. Conical particles with elliptical cross sections

In Wang (1982), the z-axial cross section of a conical
particle is described by the following expression:

2z z
21x 5 6a 1 2 cos , (9)

2 1 2! c lc
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FIG. 6. A conical body with elliptical cross sections in the x–y plane as generated by Eq. (10) with a 5 2, b 5 1,
and c 5 5.

where the parameters a, c, and l are defined in Fig. 5.
Briefly, a and c are the semiaxes in the horizontal and
vertical direction of the generating ellipse, respectively.
Here l is a parameter (with a value between 1 and `)
that determines the ‘‘sharpness’’ of the apex. A small
l value produces a sharp apex while a large value pro-
duces a rounded apex. Readers are referred to Wang
(1982) for details.

By rotating this conical curve about the z axis we
obtain a conical body of revolution whose horizontal
(x–y) cross section is a circle of radius a. This expression
has been used by Wang et al. (1987) to characterize the
size and shape of an ensemble of hailstones. While many
hailstones have approximately circular cross sections,
many have obvious elliptical cross sections (C. A.
Knight 1995, personal communication; A. Waldvogel
1995, personal communication). In order to represent
those stones with elliptical cross sections, we can mod-
ify the three-dimensional version of Eq. (9) to arrive at
the following expression:

2 2 2x y z
1 1 5 1. (10)

21 2 21 2 2[a cos (z/lc )] [b cos (z/lc )] c

The horizontal cross section of this conical particle at
a vertical level z 5 zo is an ellipse whose semiaxes in
the x and y directions are a cos21(zo/lc) and b
cos21(zo/lc), respectively. Figure 6 shows an example
of such a particle.

4. Potential applications

The shape-describing equations given above have cer-
tain obvious applications. One is using them to char-
acterize an ensemble of ice particles. These equations

involve only a few characteristic parameters and it is
relatively easy to determine their values given a certain
sample of these particles. This can be done manually
or by an automated process. Wang et al. (1987) em-
ployed an automated process to analyze several hundred
hailstones based on Eq. (9). They demonstrated that the
distributions of parameters a, c, and l can indeed be
used to characterize the shape and size of nonspherical
particles. Equation (10) only involves one more param-
eter, b, than Eq. (9) and, hence, such an automated pro-
cess can be easily designed and employed. Obviously,
Eqs. (6) and (8) can be utilized for the same purpose.

These equations can also be used to define the bound-
ary conditions for solving various theoretical problems
involving nonspherical ice particles in the atmosphere
[e.g., the scattering cross section of conical particles as
done by Sturniolo et al. (1995) but it was done for
conical bodies of revolution]. For instance, due to the
difficulty of describing the shape of these particles by
analytical equations, the boundary conditions for light
scattering by ice crystals are usually specified in a
‘‘hard’’ numerical way. The shape of an ice crystal is
drawn on paper, and the coordinates of the points on
the surface are determined manually. With equations
given in this paper, it should be much easier to determine
these coordinates and, hence, the boundary conditions.
In addition, it is also possible to design numerical grids
based on these equations for numerically solving light
scattering, Navier–Stokes, and diffusion equations in-
volving these nonspherical ice particles.
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