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ABSTRACT

This article, the first of a two-part series, presents a detailed description of a two-dimensional numerical cloud
model directed toward elucidating the physical processes governing the evolution of cirrus clouds. The two
primary scientific purposes of this work are (a) to determine the evolution and maintenance mechanisms of
cirrus clouds and try to explain why some cirrus can persist for a long time; and (b) to investigate the influence
of certain physical factors such as radiation, ice crystal habit, latent heat, ventilation effects, and aggregation
mechanisms on the evolution of cirrus. The second part will discuss sets of model experiments that were run
to address objectives (a) and (b), respectively.

As set forth in this paper, the aforementioned two-dimensional numerical model, which comprises the research
tool for this study, is organized into three modules that embody dynamics, microphysics, and radiation. The
dynamic module develops a set of equations to describe shallow moist convection, also parameterizing turbulence
by using a 1.5-order closure scheme. The microphysical module uses a double-moment scheme to simulate the
evolution of the size distribution of ice particles. Heterogeneous and homogeneous nucleation of haze particles
are included, along with other ice crystal processes such as diffusional growth, sedimentation, and aggregation.
The radiation module uses a two-stream radiative transfer scheme to determine the radiative fluxes and heating
rates, while the cloud optical properties are determined by the modified anomalous diffraction theory (MADT)
for ice particles. One of the main advantages of this cirrus model is its explicit formulation of the microphysical
and radiative properties as functions of ice crystal habit.

1. Introduction

It has recently become clear that cirrus clouds sig-
nificantly affect the global energy balance and climate,
due to their great radiative impact on atmospheric ther-
mal structure. Randall et al. (1989) used a general cir-
culation model (GCM) to perform simulations and
showed that upper-tropospheric clouds have dramatic
impacts on the large-scale circulation in the Tropics with
attendant effects on precipitation and water vapor
amounts. Ramaswamy and Ramanathan (1989), also
through GCM studies, suggested that the discrepancies
between the simulated and observed upper-tropospheric
temperature structure in the Tropics and subtropics can
be explained by the radiative heating effects of cirrus
cloud systems. These studies point out that cirrus clouds
are likely to have great impacts on the radiation and
hence the intensity of the general circulation. They also
indicated that the impact of the quality of parameteri-
zations related to cirrus clouds on the results of the GCM
may be significant. Other studies had also shown that
variations in the assumed cirrus radiative properties can
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significantly alter the results of climate models (Ra-
manathan et al. 1983; Liou 1992).

The radiative properties of cirrus depend on their mi-
crophysical properties such as ice crystal habit, ice water
content, and number concentration. The microphysical
properties, in turn, are determined by the atmospheric
forcing and environmental conditions such as larger-
scale lifting, static stability, temperature, and moisture.
For example, one possible scenario of cirrus develop-
ment could be that the cloud forms during the lifting of
moist air associated with large-scale motions, as small
ice crystals are formed in the embedded updraft. If the
upward motion persists long enough to cause further
cooling of the layer, ice crystals will precipitate by
growing to sizes with substantial fall velocities. As cir-
rus cloud evolves, the corresponding in-cloud radiative
heating patterns change accordingly. The resulting ra-
diative heating profile changes the temperature lapse
rate and, thus, the cloud dynamics. A change in cloud
dynamics resulting from the vertical velocity variations
due to changes in temperature lapse rate may, for ex-
ample, modify the ice saturation ratio and thus the
growth rate of ice, which in turn affects the micro-
physical processes to alter the size distribution of ice
crystals, further modifying the radiative heating profiles
within the cloud. Therefore, the feedback mechanisms
among cirrus radiative properties, microphysical prop-
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erties, and atmospheric condition are rather complex,
making the parameterizations of these feedback mech-
anisms a difficult task.

It is known that parameterizations for describing cir-
rus cloud properties are often highly simplified (Del
Genio et al. 1996). In simulating climate, these schemes
are simple partly because of the coarse spatial and tem-
poral resolution in global circulation models, and partly
due to our poor understanding of the microphysical
properties of cirrus and how cirrus responds to changes
in environmental conditions. In some GCMs, it is as-
sumed that cirrus clouds occur when the resolvable-
scale relative humidity exceeds some critical values.
More sophisticated GCMs represent cirrus clouds either
by diagnosing the ice water content from the predicted
total water content as a function of temperature (Del
Genio et al. 1996) or by using a prognostic formulation
to predicting cloud ice mixing ratio (Fowler et al. 1996).
All of these schemes, however, do not allow supersat-
uration with respect to ice in the model, and this may
overestimate the growth rate of ice. In order to generate
a better cirrus cloud parameterization, we must have a
better understanding of cloud formation and mainte-
nance under different atmospheric conditions.

The purpose of this study is to do a numerical in-
vestigation on the evolution and maintenance of cirrus
and the interactions among cloud dynamics, micro-
physics, and radiation. One-dimensional models (Jensen
et al. 1994; Chen et al. 1997) suffer from their simplicity
in the dynamics. In those models, the vertical velocity
has to be prescribed. The effect of radiative flux con-
vergence (radiative hearing rate) on the evolution of the
cloud cannot be modeled. However, computationally,
these 1D models can afford very detailed microphysics
modules to simulate the evolution of cloud particles
within the clouds. Since our main purpose is to inves-
tigate the dynamic–microphysical–radiative interactions
in cirrus, it is crucial to use a two-dimensional or three-
dimensional model with interactive physical links to the
atmospheric conditions, cloud physics, and radiation.
Therefore, we have developed a numerical model that
includes three modular components: dynamic, micro-
physical, and radiative. Although such a model could
be either 2D or 3D, we use the 2D version of the model
in this study, due to limited computational resources.
The model is described in the next section.

Numerical experiments presented in a companion pa-
per (Liu et al. 2003, hereafter Part II) are designed to
simulate the evolution of cirrus under different atmo-
spheric conditions embodied in four contrasting atmo-
spheric profiles made available by the Global Energy
and Water Cycle Experiment (GEWEX) Cloud System
Study (GCSS) Cirrus Cloud System Working Group
(WG2). The differences among these four profiles reside
in the temperature (cloud height) and static stability,
allowing us to study how the evolution of cirrus re-
sponds to the thermodynamic structure of the atmo-
sphere. Following the description of the model, the re-

sults of the simulations are presented and evaluated. In
addition, several sensitivity studies designed to inves-
tigate effects of radiation, ice crystal habit, latent heat-
ing, and ice crystal ventilation on cloud evolution are
also presented in Part II.

2. Model description

a. Dynamic module

In the dynamic component of the cirrus model, a set
of equations is developed for describing shallow moist
convective systems suitable for cirrus clouds. Although
a scale analysis shows that the full continuity equation
for dry air can be well approximated by the incom-
pressible form, this is not used in our model. Instead,
we apply the quasi-compressible approximation as de-
scribed in Anderson et al. (1985). This is because the
incompressible form of the continuity equation requires
that we solve a Poisson equation (elliptic partial dif-
ferential equation) for pressure. A common method of
solving the Poisson equation is the relaxation method,
which is iterative and thus computationally expensive.
In contrast, the quasi-compressible approximation, re-
places the Poisson equation with a straightforward pre-
dictive pressure change equation. This admits sound
waves, limiting the size of the numerical time step, but
this problem is mitigated by artificially reducing the
sound wave phase speed so that a larger time step can
be used. Turbulence is parameterized by approximating
the eddy flux terms using a 1.5-order closure scheme
(Klemp et al. 1978; Redelsperger and Sommerra 1986).
The basic equations construct the dynamic framework
of this cirrus model is listed in the next section.

1) THE BASIC EQUATIONS

The basic (dependent) variables in the model are hor-
izontal velocity u, vertical velocity w, subgrid-scale tur-
bulent kinetic energy e, potential temperature u, air pres-
sure p, water vapor mixing ratio qy , and the mixing ratio
qx and number concentration Nx of each hydrometeor
class. The basic equations that govern variables other
than subgrid-scale turbulent kinetic energy (TKE) e will
be discussed in this section, and the TKE budget equa-
tions will be discussed in detail in the next section.

In this model, each dependent variable f is decom-
posed into three parts as

f(x, z, t) 5 f (z) 1 f9(x, z, t) 1 f0(x, z, t)0

5 f(x, z, t) 1 f0(x, z, t), (1)

where f0(z) is the prescribed horizontally uniform back-
ground base state, represents the departuref9(x, z, t)
from the background base state (grid-resolvable eddy),
and f0(x, z, t) represents the subgrid-scale perturbation
(grid-unresolvable eddy). Each model variable f can
also be separated into a grid-resolvable andf(x, z, t)
grid-unresolvable component f0(x, z, t). This decom-
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position is done because we are unable to resolve all
scales of motion in the atmosphere on the model grid.
This study uses the time-dependent, nonhydrostatic
primitive equations for motion, thermodynamic energy,
and mass continuity of dry air, hydrometeors, and water
vapor. Since cirrus clouds are shallow convective sys-
tems, appropriate scaling analysis can be done to sim-
plify the system of equations. The Reynolds averaging
technique is applied to each of the scaled equations to
yield the spatially filtered properties of each variable
because we have separated each variable into grid-re-
solvable and subgrid parts using Eq. (1). The continuity
equation of dry air is treated specially by casting it into
quasi-compressible form. The quasi-compressible sys-
tem is computationally efficient and retains both the
accuracy and the simple boundary conditions of the ful-
ly compressible system. In this kind of approach, di-
mensional pressure and potential temperature are the
prognostic thermodynamic variables, while temperature
and density are diagnosed.

The explicit forms of these equations are now sum-
marized below in Einstein summation notation. For the
equations of motion,

]u ]u ] 1 ]P9i i5 2u 2 (u 0u 0) 2j j i 1 2]t ]x ]x r ]xj j o i

advection divergence pressure
of turbulent gradient

momentum flux force

u9 C P9y1 gd 1 0.608q9 2 q9 2 , (2)i3 y x1 2u C Po p o

buoyancy

where g is the gravitational acceleration, ro is the base-
state density of air, Cy is the specific heat at constant
volume, Cp is the specific heat at constant pressure, and
d is the delta function (dij 5 1 for i 5 j and dij 5 0 for
i ± j). The thermodynamic variables (virtual potential
temperature and pressure) are linearized in the buoyancy
term while the Boussinesq approximation, which states
that variations in density can be ignored except when
multiplied by gravity, is also applied. We further assume
that each turbulent momentum component behavesu0j
incompressibly (] /]xj 5 0), an assumption that alsou0j
applies to the other equations that follow.

The pressure tendency equation, derived and approxi-
mated from the full continuity equation using the equation
of state (Klemp and Wilhelmson 1978), is written as

]P9
21 C (= r u9 ) 5 0, (3)s o i]t

where Cs is the pseudo-sound speed. The choice of Cs

is not arbitrary. It must be small enough to allow a larger
time step than in a fully compressible system, yet suf-
ficiently large so that this pseudo-sound mode will not
contaminate any significant meteorological signal. An-
derson et al. (1985) demonstrated that with Cs greater

than twice the maximum wind speed, the quasi-com-
pressible system produces minimal errors. Droegemeier
and Wilhelmson (1987), comparing the results of nu-
merical thunderstorm outflow simulations calculated
from the quasi-compressible and fully compressible sys-
tems, showed that choosing Cs 5 100 m s21 produces
the best result. This is the value of Cs used in our model.

The predictive equation for potential temperature u,
a conserved quantity for dry adiabatic processes, is giv-
en by

R /Cp]u ]u ] Poo5 2u 2 (u 0u 0) 1 (Q 1 Q ), (4)j j R C1 2]t ]x ]x Pj j

advection divergence diabatic heating
of turbulent

heat flux

where CP is the specific heat at constant pressure, R is
the specific gas constant for dry air, and Poo is a ref-
erence pressure often taken to be 1000 mb, while QR

and QC are the heating rates due to net radiative flux
convergence and phase change, respectively.

The water vapor budget equation and the conserva-
tion equations of hydrometeor mixing ratio and number
concentration are given, respectively, by

]q ]q ]y y5 2u 2 (u 0q 0) 1 S , (5)j j y y]t ]x ]xj j

advection divergence
of turbulent

water vapor flux

]q ]q ] ]x x5 2u 2 (u 0q 0) 1 (V q )j j x t,x x]t ]x ]x ]xj j 3

advection divergence gravitational
of turbulent fallout
ice mixing
ratio flux

1 S 1 S 1 S , (6)qx,diff qx,coll qx,nuc

sources/sinks due to
microphysical processes

]N ]N ] ]x x5 2u 2 (u 0N 0) 1 (V N )j j x t,x x]t ]x ]x ]xj j 3

advection divergent gravitational
of turbulent fallout
ice number

concentration
flux

1 S 1 S 1 S . (7)Nx,diff Nx,coll Nx,nuc

sources/sinks due to
microphysical processes

The last term in the water vapor budget equation (Sy )
represents the mass transfer between the vapor phase
and hydrometeors; Vt,x in Eqs. (6)–(7) is the terminal
velocity of the hydrometeor class x. The microphysical
sources and sinks of the hydrometeor number concen-
tration and mixing ratio are due to diffusional growth
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(SNx,diff , Sqx,diff), collection processes (SNx,coll , Sqx,coll), and
nucleation mechanisms (SNx,nuc, Sqx,nuc), respectively.
These terms link the dynamic module and the other two
modules.

2) TURBULENCE CLOSURE SCHEME

Due to the presence of turbulent flux terms (subgrid
eddy transports) resulting from Reynolds averaging, the
number of unknowns is larger than the number of equa-
tions given in the previous section. In order to close
this set of equations, turbulent fluxes have to be ap-
proximated in terms of known quantities. The param-
eterization of subgrid eddies in our model is the 1.5-
order turbulent closure scheme used by Klemp and Wil-
helmson (1978) and Redelsperger and Sommeria
(1986). This is sometimes referred to as local closure;
that is, an unknown quantity at any point in space is
parameterized in terms of values and gradients of known
quantities at the same point. Local closure thus assumes
that turbulence is analogous to molecular diffusion. In
this type of approach, a prognostic equation for tur-
bulent kinetic energy e is specified, and the values of e
calculated from this equation are then used to diagnose
eddy mixing coefficients for momentum, heat, and mois-
ture.

The subgrid-scale turbulent kinetic energy is defined as

1
2e 5 (u 0) . (8)i2

Thus, following the derivation of the budget equation
as in Stull (1988), the TKE budget equation can be
written as

]e ]e
1 ui]t ]xj

A B

2u 0u 0 ]u ]u 0i y i i5 d g 2 u 0q 0 2 u 0u 0 2 n ,i3 i T i j1 2 1 2u ]x ]xy j j

(9)

C D E

where n is the molecular viscosity of air and qT the total
water mixing ratio (all phases). The terms A and B on
the left-hand side of (9) represent the respective local
storage of TKE and the advection of TKE by the grid-
resolvable wind. Term C is the buoyant production or
consumption of TKE. Term D is the mechanical or
shear-generated production/loss of TKE, and the last
term E represents the viscous dissipation of TKE.

The dissipation term E is approximated as

2 1.5]u 0 C ei m2n 5 2 , (10)1 2 1 2]x L

where Cm 5 0.2 (Deardorff 1972). We approximate the
mixing length L as usual by relating it to the model grid
dimensions:

1/2L 5 (DxDz) , (11)

where Dx and Dz are the grid spacings. The eddy flux
of momentum, in term D of (9) and in the equation of
motion (2), can be parameterized as

]u ]u 2i i(u 0u 0) 5 2K 1 1 d e. (12)i j m i j1 2]x ]x 3j i

Here, Km is the eddy mixing coefficient for momentum
and is related to the turbulent kinetic energy by

0.5K 5 C Le .m m (13)

The eddy moisture and heat fluxes in the respective
moisture conservation and thermodynamic equations
are defined as

]f
(u 0f0) 5 2K , (14)i h ]xi

where Kh 5 3Km is the eddy mixing coefficient for heat
and moisture. The factor 3 is based on Deardorff’s re-
sults (1972) from numerical simulations of unstable and
neutral planetary boundary layers. Eddy mixing coef-
ficients for hydrometeors are assumed identical to Kh.

The buoyancy term C in the equation for the gen-
eration of TKE in saturated conditions can be approx-
imated by

u 0u 0i y 2 u 0q 0i T1 2uy

BK ]u L P ]q ]qh ei y i o i T5 2 1 K , (15)h1 21 2u ]x C T ]x ]xy i P o i i

where uei is an equivalent potential temperature, which
takes ice processes into account, while To and Po are
the respective base state temperature and pressure; B is
written as

«L qy l y1 1 0.61
R TdB 5 , « 5 0.622; (16)

2«L qy l y1 1
2C R TP d

and Lyl and Lyi are the latent heat of condensation and
sublimation, respectively. The buoyancy term for un-
saturated conditions can be written as

u 0u 0 K ]ui y h2 u 0q 0 5 2 . (17)i T1 2 1 2u u ]xy y i

At this point, the turbulent kinetic energy is closed and
the value of e is obtained, so that eddy mixing coeffi-
cients can then be calculated.

In order to close the turbulent flux terms in the prog-
nostic equations for momentum, heat, moisture, and hy-
drometeors, those terms are parameterized in the same
fashion as in Eqs. (12) and (14).
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TABLE 1. Power-law relationships for ice crystals (cgs unit). Width is denoted as W, diameter is D, and length is L.

Habit Dimensional relationship
Projected area

(A)-dimensional relationship
Mass (m)-dimensional

relationship
Capacitance (C)-dimensional

relationship

Spheres W 5 D
p

2A 5 D
4

p
3m 5 r Di 6

C 5 0.5D

Plates W 5 0.0141D0.475 A 5 0.2395D1.855 m 5 0.007384D2.449 C 5 0.277D0.99

Columns D 5 0.26L0.927 A 5 0.0459L1.415 m 5 0.01658L1.91 C 5 0.278D0.97

Rosettes W 5 D A 5 0.0869D1.57 m 5 0.0459D1.415 C 5 0.5D
Aggregates W 5 D A 5 0.2285D1.88 m 5 0.00281D0.21 C 5 0.5D

3) NUMERICAL METHODS, GRID SETUP, AND

BOUNDARY CONDITIONS

The time splitting integration technique proposed by
Klemp and Wilhelmson (1978) is included. The inte-
gration process is split into two parts: one is for non-
sound-wave-related variables using a larger time step,
the other is for sound-wave-related variables using a
smaller time step. The time integration is done with
second-order centered differences. Subgrid-scale tur-
bulent kinetic energy, water vapor, and potential tem-
perature are numerically advected using the sixth-order
Crowley scheme (see Tremback et al. 1987), while hy-
drometeors are advected using a total variation dimin-
ishing (TVD) scheme (Yee 1987). The TVD scheme is
introduced here because most numerical advection
schemes are dispersive across the discontinuity (the in-
terface between the environment and an advected dis-
turbance), and thus may lead to unphysical negative
values across a discontinuity for positive definite vari-
ables such as mixing ratios (or concentrations) of hy-
drometeors. Therefore, the TVD scheme is applied to
the advection of hydrometeors, because this scheme can
effectively eliminate the artificial oscillation across the
discontinuity.

The Arakawa C grid (Arakawa and Lamb 1981) is
used in this model. It is a staggered grid system in which
velocity components and scalar variables are located at
the respective normal faces and centers of grid cells.
This staggered grid system is found to be more com-
putationally stable than an unstaggered one. The grid
spacings in the horizontal and vertical directions are set
to 200 and 100 m, respectively.

The boundary conditions are chosen similar to Starr
and Cox (1985). Free slip condition is imposed on the
horizontal component of velocity variable (]u/]z 5 0)
at the upper and lower boundaries, where the eddy dif-
fusion terms are also specified as zero, whereas hydro-
meteors are allowed to fall across the lower boundary.
The perturbation vertical wind and the perturbation pres-
sure are assumed to cease at upper and lower boundaries.
This is to say that vertical wind and pressure are kept
at their basic-state values along top and bottom bound-
aries. The advection term for a scalar variable at the
upper and lower boundaries is setup as the gradient of
the advection term is zero. Along the boundaries, we
presently set the normal mixing term equal to zero. This
approach ensures that vertical gradients in the mean state

profiles are not distorted due to eddy mixing near the
boundaries. Cyclic boundary conditions are applied in
the horizontal direction. The impinging of updrafts and
downdrafts on stable atmosphere above and below the
cloud deck generates gravity waves. Rigid boundary
conditions reflect the waves back to the domain and
cause false interaction of these waves with the cloud.
Thus, artificial sponge layers are added to the lower and
upper parts of the domain to absorb the energy of a
wave and to reduce wave reflection. We use a so-called
Rayleigh damping proposed by Klemp and Lilly (1978)
in the absorbing layer. In the absorbing layer, only the
perturbations of a variable from its upstream values are
damped.

b. Microphysics module

A double-moment microphysical parameterization, as
proposed by Ferrier (1994), is used to describe the evo-
lution of the hydrometeor size distribution. This method
assumes that various ice categories may be represented
by the given specified size distribution functions. Pa-
rameterizations are then developed for various physical
processes including nucleation, diffusional growth, and
collisional growth of ice crystals, transferring mass be-
tween the various hydrometeor classes based on the as-
sumed size distributions. Both the mixing ratio and num-
ber concentration of ice crystals are predicted at each
grid location. The mean ice crystal diameter can then
be diagnosed from these two quantities. Thus, the evo-
lution of ice crystal size spectra can be more realistically
resolved.

In this cirrus model, hydrometeors are categorized
into two forms: pristine ice crystals and ice crystal ag-
gregates. The mathematical form used here to param-
eterize the size spectrum of ice crystals is the inverse
exponential gamma distribution. According to obser-
vational data, many ice crystal characteristics such as
mass, projected area, and dimension can be approxi-
mated as powers of the characteristic length (e.g., Auer
and Veal 1970). The power laws used in this model are
summarized in Table 1.

It has been shown by Starr and Cox (1985) that the
evolution of cirrus is highly sensitive to the terminal
velocity of ice crystal because the terminal velocity con-
trols the sedimentation rate of cirrus and thus affects its
vertical extent and optical depth. Therefore, in order to
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TABLE 2. Ice crystal capacitance. Semimajor axis length is denoted
by a, semiminor axis length is b, and diameter of a sphere is D.

Expression Sources

Columns Approximated by charger circular
cylinders

0.76b
C 5 0.708 1 0.615 a1 2[ ]a

Smythe (1956,
1962); Wang et
al. (1985)

Plates Approximated by oblate spheroids
0.52a« b

C 5 « 5 1 2
21 21 2sin « a

Pruppacher and
Klett (1978)

Sphere
rosettes

1
C 5 D

2

simulate the ice crystal fallout effect more realistically,
we adopted a method as described in Johnson (1997)
in which he combined the work of Böhm (1989) and
Mitchell (1996) to formulate the ice crystal terminal
velocity with a power-law relationship with ice crystal
diameter. The coefficients of this power law are not
constant; instead, these coefficients are functions of am-
bient air properties, coefficients of other power-law re-
lationships for ice such as mass-dimensional and pro-
jected area-dimensional relationships, and also a power-
law relationship for the Reynolds–Best number pro-
posed by Mitchell (1996). Unlike empirical terminal
velocity formulas that are fitted to specific datasets,
Johnson’s approach provides a unified terminal velocity
parameterization for all ice habits. It does not represent
particles as spheroids, but is general for any particle
shape and size. It is conceptually and mathematically
simple, appears accurate, and provides for physical in-
sight.

Heterogeneous and homogeneous freezing nucleation
mechanisms are considered in our model. A simple
function of ice supersaturation is used for the deposition
and condensation-freezing modes of heterogeneous nu-
cleation, as proposed by Meyers et al. (1992). Although
Meyers’ function has been widely used, it should be
noted that the formulation is based on measurements
made at the earth’s surface over a limited temperature
range. Here, in this study, we extrapolate the temper-
ature-dependent formula to all the possible temperature
ranges for cirrus cloud. The impact of doing so is un-
known and data are scarce to validate the values of
heterogeneous ice nucleation concentrations predicted
at low temperatures. For homogeneous nucleation pro-
cesses, we use the parameterization proposed by DeMott
et al. (1994) to estimate the homogeneous freezing nu-
cleation rates, while assuming the cloud condensation
nuclei (CCN) consist of ammonium sulfate aerosols.

The rate of mass growth of a single hydrometeor by
vapor deposition can be approximated as

dm
5 4pCG(T, P)(S 2 1), (18)

dt

where G(T, P) is the thermodynamic function

21 L R Ty5 1 (19)
2G(T, P) KR T D ey y sat

and esat is the saturation vapor pressure, Dy is the vapor
diffusivity coefficient, Ry the moist gas constant, L is
the latent heat associated with the process, and C the
capacitance of the hydrometeor. In the diffusional
growth equation of an ice crystal, both capacitance and
ventilation coefficients are functions of ice crystal
shape. Therefore, several new treatments for capacitance
and ventilation coefficients (Ji and Wang 1999), crucial
determinants of ice crystal growth, are considered in
this model study. We also assume perfect mass accom-
modation whenever water vapor lands on the ice surface.

The ice crystal capacitance, obtained by electrostatic
analogy, has dimensions of length and is a function of
particle size and shape. In this study, the capacitance of
a platelike ice crystal is approximated by that of an
oblate spheroid, while bullet rosettes are treated as
spheres. Both McDonald (1963) and Heymsfield (1975)
pointed out that the capacitance of particles with more
protruding spatial branches, such as rosettes, could be
approximated by that for spherical particles. Wang et
al. (1985) have shown that using the capacitance of
prolate spheroids for columns, in calculating the vapor
density fields surrounding stationary columnar ice crys-
tals, is inadequate. Therefore, as an alternative for co-
lumnar crystals, C has been defined by analogy to the
capacitance of charged right circular cylinders (Smythe
1956, 1962; Wang et al. 1985; Johnson 1997). The ca-
pacitances for three ice crystal types are summarized in
Table 2. To assist in the integration of the diffusional
growth equation, the capacitance is written as a power-
law approximation:

pcC 5 c D .c (20)

The coefficients and the powers for Eq. (20) are listed
in Table 1. For a given crystal diameter, the sphere/
rosette has the largest capacitance; the column, second
largest; and the plate, the smallest among the three crys-
tal types.

When particles are large enough to have appreciable
terminal velocities, the vapor density gradient is in-
creased ahead of the particles, as are the rates of heat
and mass transfer. The effect of this ventilation on the
vapor deposition rate is represented by multiplying the
depositional growth equation by a ventilation coefficient
f y , defined as

dm dm
5 f , (21)y) 1 ) 2dt dt

yd yd 0

where the subscript 0 indicates the depositional mass
growth of a stationary particle.

For spherical ice hydrometeors, the ventilation co-
efficient is taken from Hall and Pruppacher (1976), who
gave the following expressions:
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TABLE 3. Ventilation coefficients for ice crystals.

Habit C1 C2

Columns
Plates
Bullet rosettes

0.0309
0.0105
0.3005

0.1447
0.0228

20.0022

FIG. 1. Ventilation coefficients for columns, plates, bullet rosettes,
and spheres.

21.0 1 0.14X X , 1.0
f 5 (22)y 50.86 1 0.28X X $ 1.0,

where
1/3 1/2X 5 Sc Re

and Sc is the Schmidt number, while Re is the Reynolds
number.

For nonspherical ice particles such as columns and
plates, the ventilation coefficients are represented by a
second-order polynomial (Johnson 1997) that is based
on the results of Ji and Wang (1999):

2f 5 1.0 1 C X 1 C X .y 1 2 (23)

The coefficients C1 and C2 for columns and plates are
shown in Table 3. For bullet rosettes, the ventilation
coefficient is based on Jayaweera (1971) and Heyms-
field (1975):

1/2 pD 1 pL
2(L 1 D) 4 

1/2f 5 1 1 (0.6) Re , (24)  d4pC 2(L 1 D) 

where Red 5 (VtD)/n is the Reynolds number, Vt is the
terminal velocity, D is the bullet diameter, L is the bullet
length, and C is the capacitance. In order to express the
ventilation coefficient for rosettes as a function of
Schmidt and Reynolds numbers Eq. (22) was approxi-
mated by Eq. (21) with coefficients as listed in Table
3. The ventilation coefficients for all ice crystals are
shown in Fig. 1 as a function of Schmidt and Reynolds
numbers. In general, the ventilation coefficient for ice
crystal varies significantly with crystal shape, leading
to different mass diffusion rates for different crystal
type. For a given crystal diameter, columns have the
greatest ventilation effect, while the plates have the
smallest effect. The ventilation effect of ice spheres and
rosettes are similar to each other, and intermediate be-
tween those of columns and plates. However, bullet ro-
settes have slightly greater ventilation than spheres.

Ice particles collide with each other when their ter-
minal velocities differ and their concentrations are large
enough so that one hydrometeor type sweeps out a pop-
ulation of another species. The transfer of mass from
one hydrometeor to another, however, also depends on
whether coalescence occurs. That, in turn, depends on
the hydrometeor type and mass, as well as environ-
mental conditions. Hydrometeors of the same type can
also collide and coalesce (self-collection process) with
each other and become a larger particle. Thus, the self-
collection process can contribute to a mass transfer from

a pristine ice category to an aggregates category. In
order to calculate the ice aggregation processes between
different ice categories and within the same category
(self-collection), the formulations proposed by Verlinde
et al. (1990) are utilized in our model. The coalescence
efficiency is assumed to be 1, and the collision efficiency
is set to 0.1 (Kajikawa and Heymsfield 1989).

c. Radiation module

In order to calculate the radiative heating rates at each
grid point, the radiative transfer equations have to be
specified and the cloud optical properties determined.
Since the upward and downward fluxes in a given at-
mospheric layer are the main concern here, it is not
necessary to calculate the radiance distribution at each
level. Instead, a two-stream/adding model (Ackerman
and Stephens 1987) is used to calculate radiative fluxes
at each grid point. The one applied here is a narrowband
model, which divides the solar and terrestrial radiation
spectra into 11 and 20 bands, respectively.

The cirrus cloud deck is usually optically thin and
the mean free path for a photon colliding with a particle
in cirrus is much larger than that in a typically strato-
cumulus cloud deck. Therefore, the radiative heating is
distributed through the entire cirrus cloud body instead
of being distributed like two Dirac functions with op-
posite signs at the cloud top and bottom as in a typical
stratocumulus cloud (Ackerman et al. 1988). Moreover,
the volume absorption coefficient and the volume ex-
tinction coefficient are very sensitive to the ice crystal
size distribution. As the cloud evolves, the change in
ice crystal size distribution causes changes in the ra-
diative heating rates not only in the interior but also
below and above the cloud deck. It is therefore impor-
tant to correctly represent the ice crystal optical prop-
erties. The anomalous diffraction theory (ADT) was
originally proposed by van de Hulst (1981) as an ap-
proximation of Mie theory to calculate the optical prop-
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FIG. 2. Links between the microphysics module and the radiation module.

erties of spherical particles. The original ADT captures
the fundamental behavior of Mie theory, including the
phase of the interference patterns apparent in extinction
efficiencies. However, it predicts that the incident ra-
diation passes directly through a particle without re-
fracting or experiencing internal reflections, and does
not account for tunneling processes. Ackerman and Ste-
phens (1987) expanded the original ADT to approximate
the radiative properties of water clouds by parameter-
izing edge effects for the extinction efficiencies and re-
fraction effects for the absorption efficiencies. Inclusion
of the refractive effects lengthens the ray path through
the particle, thus enhancing the predicted absorption and
improving the overall performance of ADT. Mitchell
(2000) reformulated the anomalous diffraction theory
in terms of a particles’ effective photon path, and mod-
ified to reproduce Mie theory within 10% for water and
ice spheres regarding extinction and absorption. In this
reformulation of the modified anomalous diffraction
theory (MADT), he parameterized the processes of in-
ternal reflection/refraction and photon tunneling to yield
analytical expressions for the absorption and extinction
coefficients of water drops, and expanded the applica-

tion of ADT to nonspherical particles for the internal
reflection/refraction processes. The extent to which tun-
neling processes apply to ice particles depends on mor-
phology, and is an active area of research. In our ra-
diation module, we adopt Mitchell’s approach to cal-
culate the optical properties of cirrus. The advantages
of Mitchell’s parameterizations are that the absorption
and extinction coefficients are analytical functions of
the size distribution parameters, shapes (or habits),
wavelengths, and refractive index. Therefore, the optical
properties calculated are explicit functions of ice crystal
geometry and are not based on an effective radius that
has little physical meaning. Another advantage of
MADT is that the scattering properties in the thermal
infrared spectral range can be explicitly calculated, so
that the scattering is not ignored.

The links between the radiative transfer and micro-
physics modules to calculate the radiative heating rates
are illustrated in Fig. 2. The absorption, extinction, and
single scattering albedo can be calculated accurately for
both the solar and terrestrial spectra, and scattering is
not ignored when calculating thermal infrared radiation.
In this study, the radiative heating rates are calculated
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separately for solar and terrestrial spectra. Vertical at-
mospheric columns are assumed independent of each
other. Consequently, interactions of radiative flux
among adjacent columns are ignored. The indices of
refraction for ice in this study are from Warren (1984).

3. Summary

A two-dimensional quasi-compressible numerical
cloud model is developed to simulate the evolution of
cirrus. The model contains three modules embodying
dynamics, microphysics, and radiation, along with het-
erogeneous and homogeneous nucleation of haze par-
ticles. In the dynamics module, a set of equations is
developed for a shallow moist convective system. Ad-
vection terms in the particle transport equations are cal-
culated using the TVD scheme to ensure preservation
of positive definiteness for microphysical variables such
as ice mixing ratio and number concentration. The TVD
scheme not only ensures the positive definiteness of the
microphysical variables (mixing ratio and number con-
centration) being advected, but also reduces computa-
tional errors resulting from numerical dispersions. Sub-
grid eddy transports are parameterized using a 1.5-order
turbulence closure scheme. The main feature of the mi-
crophysics module is a double-moment scheme to sim-
ulate the evolution of the ice crystal size distributions.
Diffusional growth, sedimentation, and aggregation of
ice crystals are explicitly calculated. Heterogeneous and
homogeneous nucleation of haze particles are included.
Ventilation coefficients for different habits of ice crys-
tals are used, based upon calculations of the flow field
around a single ice crystal falling at its terminal velocity
as well as upon solving the convection–diffusion equa-
tion for the water vapor density field around the moving
ice crystals. In the radiation module, a two-stream ra-
diative transfer model is used to calculate the radiative
fluxes and heating rates, while the cloud optical prop-
erties are obtained by the modified anomalous diffrac-
tion theory for both spherical and nonspherical particles.
Scattering by ice crystals accounted for in the model
infrared heating rate, since the extinction properties for
thermal infrared radiation can be calculated accurately
by modified anomalous diffraction theory. Unlike most
of the existing parameterizations for ice crystal optical
properties that are derived from limited sets of obser-
vations or laboratory results, MADT has more physics
behind the parameterization. The major advantage of
this cirrus model is that both microphysical and radiative
properties are calculated as explicit functions of ice
crystal habit. Thus, sensitivity of the cloud evolution to
ice crystal habit can be investigated.

The focus of this study, the evolution of cirrus clouds,
is embodied in four simulation sets to be presented in
Part II. The first simulation set is designed to investigate
the sensitivity of cirrus evolution to the environmental
temperature (warm versus cold) and static stability (sta-
ble versus unstable). As will be seen in Part II, the results

suggest that cirrus cloud development is very sensitive
to both these parameters and indicate that homogeneous
nucleation and cold temperatures are the two major fac-
tors that favor persistent cirrus clouds. The other sim-
ulation sets to be presented in Part II are designed to
study the effects of radiative processes, latent heat, ice
crystal habit, and ice aggregation on cirrus evolution,
respectively.
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