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[1] The capacitances of solid and hollow hexagonal ice
columns are calculated using the classical electrostatic
analogy theory. Finite element techniques are used to solve
the Laplace equation to obtain water vapor density
distribution from which the capacitance can be
determined. The results show that solid and hollow
columns of the same dimensions have nearly the same
capacitance despite the existence of cavities in the latter,
which implies the same mass growth rates of the two. The
computed capacitances agree well with experimental
measurements. Since the volume of a hollow column is
smaller than that of a solid column of the same dimensions,
the same mass growth rate prompts the hollow column to
grow faster in linear dimensions and hence interact stronger
with radiation. This will have important implications on the
cirrus influence on climate. Citation: Chiruta, M., and P. K.

Wang (2005), The capacitance of solid and hollow hexagonal ice

columns, Geophys. Res. Lett., 32, L05803, doi:10.1029/

2004GL021771.

1. Introduction

[2] Hexagonal columnar ice crystals are one of the most
widely distributed ice crystal habits in atmospheric clouds
[Pruppacher and Klett, 1997; Wang, 2002; Walden et al.,
2003]. Heymsfield and Platt [1984] and Heymsfield and
Iaquinta [2000] reported that the ice crystals sampled in
high cirrus clouds (with cloud temperature <�50�C) are
largely such columns. Cirrus clouds are thought to have
great impacts on global climate due to their strong interac-
tion with solar and terrestrial radiations [Ramanathan et al.,
1983; Liou, 2002].
[3] Liu et al. [2003a, 2003b] studied the effects of ice

crystal microphysical properties on the development of
cirrus clouds using a 2-D cirrus dynamic model and found
that the heating rates of cirrus by both solar and terrestrial
radiations are sensitive to ice habit. They found that, aside
from its direct effect on the scattering of radiation, ice habit
also influences the cloud radiative properties via its control
on the ice growth rate. Ice crystals of different habits grow
at different rates in general. In an environment of fixed
water vapor supply, the ice growth rate determines the
crystal sizes and concentrations in the cloud, which, in turn,
determine the cloud radiative properties. Thus, even if the
initial and boundary conditions are identical, a cloud that
develops into a cirrus consisting of columns may possess
different radiative properties than one that develops into a
cirrus of bullet rosettes not only due to the different
scattering cross-sections but also the different growth rates
of their constituent ice crystals.

[4] In-situ sampling of ice crystals in cirrus clouds show
that about 90% of the columnar crystals are hollow (K. N.
Liou, personal communication, 2004). They differ from
solid columns in that they have cavities in the basal planes.
While the size, shape and orientation of the cavities vary
from column to column, a typical case is that the cavities are
present in a symmetric manner, namely, one cavity on each
side along the length (c-axis) of the column (see Figure 1).
The cross-section of the cavity viewed from the side is
approximately triangular.
[5] Because of the cavities, hollow columns may grow at

different rates than solid columns. They also have different
optical properties [Liou, 2002]. Given the wide presence of
hollow ice columns in cirrus clouds, it is perhaps surprising
that their growth rates have never been determined either
experimentally or theoretically. The need to determine these
growth rates motivated this study, which will focus on the
theoretical methods.
[6] The traditional technique of theoretically determining

the growth rates of ice crystals is the electrostatic analogy
[see, e.g., McDonald, 1963; Pruppacher and Klett, 1997].
The central quantity in question in this technique is the
capacitance of the ice crystal. Surprisingly, even the capaci-
tances of relatively simple ice habits, such as solid hexag-
onal columns and plates, have never been theoretically
determined in a rigorous manner but only approximately.
This is mainly due to the difficulty in describing the shape
of hexagonal columns and plates by simple continuous
mathematical functions because of their sharp edges. Con-
sequently, solid hexagonal ice columns and plates were
approximated by prolate spheroids and thin oblate spheroids
respectively, and used the capacitances of these approxi-
mated crystals to represent real ice columns and plates [see
Pruppacher and Klett, 1997]. In the present study, the
capacitances of both solid and hollow hexagonal columns
will be calculated using the exact shapes.

2. Mathematical Formulation

[7] The technique of determining the capacitance of ice
crystals used in the present study is the same as that
employed by Chiruta and Wang [2003] for determining
the capacitance of bullet rosette ice crystals, hence we will
only give a brief sketch of the mathematical procedure
below. The ice crystals are assumed to be stationary and
no ventilation effect will be considered.
[8] We first determine the distribution of water vapor

density rv around a stationary ice crystal of arbitrary shape.
Under this condition, the vapor density satisfies the Laplace
equation:

r2rv ¼ 0 ð1Þ

GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L05803, doi:10.1029/2004GL021771, 2005

Copyright 2005 by the American Geophysical Union.
0094-8276/05/2004GL021771$05.00

L05803 1 of 4



and the following boundary conditions:

rv ¼
rs at the crystal0s surface
r1 far away from the crystal

�
ð2Þ

where both rs and r1 are constant. rs is the same as the
saturation vapor pressure.
[9] Once the vapor density distribution rv is determined,

the capacitance can be obtained by following the same
procedure as given by Chiruta and Wang [2003]. Smythe
[1956, 1962] and Wang et al. [1985] performed similar
calculations to determine the capacitances of right circular
cylinders of finite lengths by solving the Laplace equation
analytically. The present study uses numerical techniques
instead due to the more complicated shapes.

3. The Columnar Crystals and Numerical
Discretization

[10] Figure 1 shows the nine hexagonal columnar ice
crystals investigated in the present study. The eight crystals
are divided into four solid and hollow pairs; the crystals in
each pair have the same dimension and aspect ratio R (= c/a
where a is the radius of the column on the basal plane and
c is the column’s half-length).
[11] The hollow columns studied here are idealized from

actual ice column photographs. Surface irregularities are
ignored and the cavities are assumed to taper towards the
center to form inward-pointing cones, resembling an hour-
glass shape. The cavities do not reach the center of the
column. The small hexagonal disk in Figure 1 is a disk
whose thickness is the distance between the tips of the two
opposing cavities. Its capacitance is also calculated to serve

as a reference. The aspect ratios of these crystals are (from
right to left): R = 0.2, 1.1, 1.36, 1.9, and 3.33.
[12] The outer rims of the cavities are assumed infinitely

sharp. Detailed geometrical specifications of the columns
and the cavities are given in Figure 2. As shown in Figures 1
and 2, the cavities look like six-sided pyramids with
hexagonal bases.
[13] The surface area and volume of these crystals can be

calculated using the following formulas:

Solid columns

S ¼ 12acþ 3
ffiffiffi
3

p
a2 ð3Þ

V ¼ 3
ffiffiffi
3

p
a2c ð4Þ

Hollow columns

S ¼ 12acþ 6a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 3

4

r
a2 ð5Þ

V ¼ 3
ffiffiffi
3

p
a2c�

ffiffiffi
3

p
a2h ð6Þ

where S and V are the surface area and volume, and h is the
depth of the cavity (see Figure 2).
[14] Finite element techniques similar those employed by

Chiruta and Wang [2003] are employed to numerically solve
the Laplace equation (1). Figure 3 shows an example of the
hollow column mesh used for the numerical calculations.

4. Results and Discussions

4.1. Capacitance Results

[15] The capacitances of four solid columns, four hollow
hexagonal ice columns and the reference disk calculated
using the method described above are plotted as a function
of the aspect ratio R as shown in Figure 4. Experimental
measurements of solid and hollow metal hexagonal columns
(R = 2.63) by Podzimek [1966] are also shown, which agree
excellently with our calculations. Also plotted on the chart
are capacitances of prolate/oblate spheroids (from the for-

Figure 1. The nine simulated columnar ice crystals.

Figure 2. The geometrical dimensions of the cavity in a
hollow column.

Figure 3. The discretization into finite elements of the
analysis domain for a hollow column. Due to the symmetry,
only 1/12 of the column (the portion close to the origin) is
needed to form the mesh.
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mulas given by Pruppacher and Klett [1997, pp. 547–548])
and calculated circular cylinders [from Wang et al., 1985]
for comparison. First, the capacitance appears to be a linear
function of the aspect ratio for both solid and hollow
columns. Thus for a fixed radius a, the longer the column,
the greater is the capacitance.
[16] Secondly, the differences between the capacitance

values of solid and hollow columns of the same aspect ratio
are very small, and are either due to the slight difference in
geometry or grid resolution. In essence, the differences are
too small to be significant. Thus, we propose to use the
average values as representing the capacitance for both solid
and hollow hexagonal columns. The average capacitances
as a function of the aspect ratio can be fitted into a line as
shown in Figure 4 and the fitting equation is:

C ¼ 0:751þ 0:491R ð7Þ

where C is the capacitance. All the following discussions
about column capacitances refer to values calculated
using (7).
[17] Figure 4 also shows that using the capacitances of

circular cylinders and prolate spheroids to approximate that
of hexagonal columns of the same aspect ratios result in
errors of 
20% to 
30% respectively for R > 3 and seem to
increase with increasing R. The errors for smaller aspect
ratios are smaller.
[18] Figure 5 shows the capacitance of solid and hollow

hexagonal ice columns as a function of surface area and
volume. The data points in Figure 5 can be fitted by the
following linear equations:

C ¼ 5:672� 10�1 þ 4:133� 10�2S Solidð Þ ð8Þ

C ¼ 6:790� 10�1 þ 2:897� 10�2S Hollowð Þ ð9Þ

C ¼ 7:016� 10�1 þ 1:418� 10�1V Solidð Þ ð10Þ

C ¼ 7:057� 10�1 þ 9:451� 10�2V Hollowð Þ ð11Þ

where S are in a2 unit and V in a3 unit, respectively.

[19] From hindsight, it is perhaps reasonable to expect the
similar-dimensioned hollow and solid columns to have
similar capacitances. In the electrostatic analogy theory,
the ice crystals are treated as perfect electric conductors.
If the hollow column’s base is closed by a very thin surface
instead of open as in the present case, we would expect its
capacitance to be the same as that of a solid column of the
same dimension and aspect ratio because all electric charges
would exist only on the outer surface irrespective of how
large the cavity is inside. Now if the thin surface has some
openings so that the surface is no longer closed, we would
probably expect that the capacitance should still remain
nearly unchanged because the surface is very thin and
nothing substantial is altered in the new configuration.
Currently we do not have a rigorous proof of this conjec-
ture, but the numerical results seem to lend support to it.

4.2. Implications of the Capacitance Results

[20] Because of the cavities, a hollow column has a
greater surface area and a smaller volume than a solid
column of the same dimension and aspect ratio. Figure 6
illustrates this statement clearly.
[21] It is seen here that, as the aspect ratio increases from

1 to 4 (i.e., the length of the column increases from c to 4c),
the solid-to-hollow surface area ratio drops from 
0.84 to

0.70 whereas the corresponding volume ratio increases
from 
1.37 to 
1.48. The difference is the greater the
longer the columns. The equations for the linear fits in
Figure 6 are:

Ss=Shð Þ ¼ 8:857� 10�1 � 4:469� 10�2R ð12Þ

Vs=Vhð Þ ¼ 1:352þ 3:204� 10�2R ð13Þ

where Ss and Sh are the surface area, and Vs and Vh are the
volume of solid and hollow columns respectively.
[22] The difference in volume between the solid and

hollow columns is especially relevant to the discussion of
growth rate. According to the electrostatic analogy, a hollow
column will have the same mass growth rate (dm/dt) as a
solid column having the same capacitance C. If the two

Figure 4. The capacitances of hexagonal ice columns,
prolate and oblate (the one indicated by OB) spheroids, and
circular cylinders as a function of the aspect ratio R.
Experimental results are taken from Podzimek [1966].

Figure 5. Variation of capacitance with column surface
area and volume.
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have the same dimension and aspect ratio, then the hollow
column has a smaller volume than the solid column. If we
assume that the ice densities of the two ice columns remain
the same, then since dm/dt = rice(dV/dt) where rice is the ice
density, the volume growth rates of the two columns are
also the same. But the same dm/dt implies that the hollow
column will grow faster in linear dimension—either it
grows longer or thicker or both, and that will eventually
lead to a different dimension and aspect ratio from the solid
column. From then on, of course, even the mass growth
rates will be different since the capacitance will be different.
If vapor supply remains steady, the capacitance of the
hollow columns will become greater than that of the solid
columns and hence grow at higher mass rates. The same
capacitance also determines the evaporation rate, just that
the vapor flux is in the opposite direction. Equations (7)–
(11) provide the capacitance values of solid and hollow
hexagonal ice columns in various forms that can be used in
cirrus cloud models such as Liu et al. [2003a, 2003b].

5. Conclusions and Outlooks

[23] We showed above that the capacitances of solid and
hollow hexagonal ice columns of the same dimension and
aspect ratio are practical the same. We have developed
empirical formulas of the crystal capacitance as a function
of aspect ratio, surface area and volume of the ice crystal.
These formulas can be employed to determine the columnar
ice crystal growth and evaporation rates.
[24] Of course, the capacitance is not the only factor

determining the ice growth rates. The ice growth and
evaporation rates in clouds depend on other factors in
addition to the capacitance. During the growth or evapora-
tion of an ice crystal, latent heats will be released or

consumed because phase change of water substance is
occurring. Thus the temperature at the crystal surface will
be warmer or colder than its environment depending whether
deposition or evaporation is occurring, and this temperature
influences the saturation vapor density value and hence
the growth/evaporation rate. Thus, the determination of
growth rate is a coupled heat and mass transfer problem
[Pruppacher and Klett, 1997]. Another factor is the venti-
lation effect caused by the motion of the crystal in air [see,
e.g., Pruppacher and Klett, 1997; Ji and Wang, 1998]. We
are currently performing calculations of the growth and
evaporation rates and bulk densities of both solid and hollow
columnar ice crystals with the above two factors included
and the results will be reported in the near future.
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ATM-0234744, ATM-0244505, NOAA NESDIS-GIMPAP project and
NASA Grant NAG5-7605.
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Figure 6. Hollow to solid surface area ratio (Sh/Ss) and
volume ratio (Vh/Vs) as a function of aspect ratio.
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