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ABSTRACT

The capacitances of seven bullet rosette ice crystals are computed based on the classical electrostatic analogy
theory of diffusional growth. The rosettes simulated have 2, 3, 4, 6, 8, 12, and 16 lobes using mathematical
formulas published previously. The Laplace equation for the water vapor density distribution around a stationary
rosette is solved explicitly by the finite element method. The total flux of vapor toward the rosette surface and
the vapor density on the surface determine the capacitance. The capacitances of these rosettes are smaller than
that of spheres of equal radii but greater than columnar ice crystals of the same maximum dimensions. They
can be greater or smaller than that of circular plates, depending on the number of lobes. Since many previous
estimates of rosette growth rates were based on the assumption that their capacitances are the same as spheres
of equal radii, the present finding implies that some of the previous rosette growth rates may be overestimated.
The overestimation becomes less important if the rosettes have more lobes. Empirical power equations are given
to fit the relations between the capacitance and the number of lobes, surface area, and volume of rosettes. Possible
implications of rosette capacitance on the atmospheric heating by cirrus clouds are also discussed.

1. Introduction

It has recently become clear that cirrus clouds sig-
nificantly affect the global energy balance and climate
due to their great radiative impact on atmospheric ther-
mal structure. Studies utilizing climate models are being
conducted to understand the impact of cirrus on climate.
In these types of studies it is necessary to assume certain
radiative properties of cirrus clouds to assess their im-
pacts. Variations in the assumed cirrus radiative prop-
erties can significantly alter the results of these climate
models (Ramanathan et al. 1983; Liou 1992), and it is
therefore important to formulate these properties cor-
rectly.

The radiative properties of a cirrus cloud depend on
its microphysical properties such as ice crystal habit,
ice water content, and number concentration. Recently,
Liu (1999) and Liu et al. (2003a; Liu et al. 2003b,
hereafter LWS) used a two-dimensional cirrus model to
study the effects of cloud microphysical parameters on
the cirrus development and found that both the cirrus
development and its radiative property are sensitive
functions of crystal habit. Their results indicate that, in
addition to its direct impact on the scattering of radia-
tion, the crystal habit may influence the overall cirrus
radiative property via its control on the ice growth rate.
During the diffusional growth process, ice crystals of
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different habits may grow at different rates by vapor
condensation. Thus, for example, even under the same
initial and boundary conditions, a cirrus cloud consist-
ing of columnar ice crystals may develop different ice
concentration and ice water content than a cirrus con-
sisting of ice plates. Such differences will result in dif-
ferent radiative properties.

In most cirrus models, the ice crystal growth rate is
parameterized based on the classical ice growth theory,
called the electrostatic analogy theory. In this theory,
the diffusional growth rate of ice crystals depends on a
quantity called capacitance, which is a function of both
ice crystal size and habit. In order to determine the ice
crystal growth rates in cirrus cloud models, it is nec-
essary to know the values of the capacitance.

One of the most important ice crystal habits in cirrus
is bullet rosettes (Heymsfield 1975; Parungo 1995).
Heymsfield and Iaquinta (2000) reported high occur-
rence frequency of rosettes in midlatitude cirrus, making
it one of the dominant habits for the cirrus clouds they
have investigated. In view of this frequency, it is ob-
viously important to have more accurate values of ro-
sette capacitance in order to evaluate their growth rates
and assess their impacts. Yet the capacitance of rosettes
has never been determined rigorously, mainly due to
their complicated shapes that render mathematical treat-
ment difficult. To make some headway, McDonald
(1963) and Heymsfield (1975) suggested that the ca-
pacitance of particles with more intricate and spatial
branches, such as rosettes, could be approximated as
that of spherical particles of equal radii. LWS used this
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approximation to determine the growth rate of rosettes
and showed that a cirrus cloud consisting of bullet ro-
settes would have much larger radiative effect than cir-
rus clouds of other ice crystal habits. Given the same
initial environmental conditions, a peak heating rate due
to infrared radiation for rosette cirrus, for cirrus ice
columns and ice plates, and for spheres would be 2.5,
2, and 6 times greater, respectively. Its heating rate due
to shortwave solar radiation is also substantially greater
than other habits. Such a high potential impact on the
atmospheric heating rates makes the determination of
the bullet rosette capacitance even more urgent.

This paper is devoted to the task of calculating the
capacitance of bullet rosette ice crystals. In the follow-
ing sections, we will first review briefly the electrostatic
analogy theory of ice crystal diffusional growth to clar-
ify the role of the capacitance. Then we will describe
the techniques of simulating the shapes of these rosettes
and the methods of determining their capacitance. This
will be followed by the discussion of the results and
conclusions.

2. A brief review of the electrostatic analogy
theory of ice crystal growth

The classical theory of ice crystal growth is called
electrostatic analogy because it dwells on the similarity
between the equations governing the water vapor dis-
tribution around an ice crystal and the electrostatic po-
tential distribution around an electric conductor of the
same shape as the ice crystal. A detailed discussion can
be found in standard textbooks of cloud physics (e.g.,
Pruppacher and Klett 1997; Hobbs 1976; Young 1993).
The following is a brief outline.

Note that the electrostatic analogy is only relevant to
the growth of stationary ice crystals. Another important
effect on the crystal growth, the ventilation effect that
results from the motion of the crystal, requires the so-
lutions of the Navier–Stokes equations for flow past
rosette crystals, but unfortunately the solutions are not
available at present.

The distribution of water vapor density ry around a
stationary ice crystal of arbitrary shape satisfies the La-
place equation

2¹ r 5 0,y (1)

with the following boundary conditions:

r at the crystal’s surface,sr 5 (2)y 5r far away from the crystal,`

where both rs and r` are constant. In electrostatics, the
electric potential w around a conductor of the same (ar-
bitrary) shape as the ice crystal would also satisfies the
Laplace equation

2¹ w 5 0, (3)

with the boundary conditions

U on the crystal’s surface,
w 5 (4)50 at the outer boundary of the domain.

Obviously, equation set (1) and (2) are completely
equivalent to equation set (3) and (4), the only difference
being the symbols. Thus, if the set (3) and (4) can be
solved, the same solution would also satisfy the set (1)
and (2). However, due to the complicated shapes of most
ice crystals, we rarely solve these equations directly to
determine the distributions of ry and w (although this
was done in Ji and Wang 1999). Instead, since the main
purpose of such calculations is to determine the ice crys-
tal diffusional growth rate given by the integral

dm
5 D =r · ds, (5)y E ydt s

where m is the mass of the ice crystal, Dy the diffusivity
of water vapor in air, and ds the infinitesimal increment
of an arbitrary surface enclosing the ice crystal, it turns
out that we can bypass the determination the explicit ry

distribution. This understanding stems from the well-
known Gauss law in the classical electrostatics, which
states that the enclosing surface integral of the electric
flux density equals the total charge Q on the conductor.

On the other hand, the total charge Q is related to
the electric potential by the following expression:

Q 5 C(U 2 0) 5 CU, (6)

where C is the capacitance of the conductor. Equation
(6) is independent of the shape of the conductor. Ac-
cording to this analogy (see Pruppacher and Klett 1997
for details), the term dm/dt in (5) is analogous to Q and
thus can be calculated by

dm
5 4pD C(r 2 r ). (7)y ` sdt

Equation (7) indicates that the growth rate of the ice
crystal can be determined if its capacitance C is known.
All other quantities on the right-hand side of (7) are
independent of the shape.

The capacitance C in (7) can be either calculated or
measured experimentally. While the capacitances of some
simpler ice crystal shapes such as columns and plates
have been theoretically calculated approximately or mea-
sured directly by using metal models of the crystals
(McDonald 1963; Podzimek 1966; also see Pruppacher
and Klett 1997, chapter 13), neither has ever been at-
tempted for the important case of bullet rosettes. To our
knowledge, the present study is the first to do so.

3. Mathematical determination of capacitance

a. Nondimensionalization of the governing equations

The main idea of determining the capacitance of a
rosette is to utilize Eq. (7), namely, we shall determine
dm/dt explicitly and then use (7) to obtain the capaci-
tance C. This is analogous to determining the electric



838 VOLUME 60J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

capacitance of a conductor with known potentials on
the surface and at infinity. To determine dm/dt, we need
to explicitly solve the water vapor density distribution
first. The governing equations for our problem are there-
fore Eq. (1), subject to appropriate boundary conditions.

The Laplace equation will be made dimensionless first
for the convenience of analysis:

2¹9 r9 5 0,y (8)

where the primed quantity in the integrand are nondi-
mensionalized according to the following relations:

r 2 r ry `r9 5 , r9 5 , (9)y r 2 r as `

where a is the radius of the ice crystal and r the radial
distance from the origin, which is defined at the center
of the ice crystal in the present study. The radius of the
rosette considered here is defined as the distance from
the center of the rosette to the tip of one of the lobes.
We assume that all lobes have the same length in this
study.

Once the vapor density distribution is determined,r9y
the capacitance is obtained by

a
C 5 =9r9 · ds9. (10)yR4p

s

Smythe (1956, 1962) and Wang et al. (1985) performed
similar calculations to determine the capacitance of right
circular cylinders of finite lengths by solving the La-
place equation analytically. In view of the more com-
plicated rosette shape in the present study, we will use
numerical techniques instead.

We need to carefully define appropriate boundary
conditions for our numerical problem. Since the capac-
itance is a function of the position of these boundaries,
the capacitance of an isolated conductor will be different
from the same conductor when it is placed near another
charged body with a certain potential. This means that
the distance of the outer boundary may have an effect
on the precise value of the capacitance. In atmospheric
clouds, the mean distance between individual cloud par-
ticles is rather large relative to the particle size, typically
on the order of many tens to hundreds of particle radii
(Prupppacher and Klett 1997). Thus the ice particles can
often be considered as isolated individual particles, and
hence the most relevant capacitance for our purpose here
will be that of an isolated ice crystal; that is, the outer
boundary should be placed at infinity. Thus boundary
condition (2) is appropriate. In numerical calculations,
the term ‘‘infinity’’ is replaced by ‘‘sufficiently far
away.’’ In nondimensional form, the appropriate bound-
ary conditions for the present situation are

1 on the surface of the rosette,
r9 5y 50 at a distance far away from the rosette.

(11)

b. Treatment of the boundary conditions

1) THE INNER BOUNDARY

We will use the finite element techniques to solve the
Laplace equation (8) subject to the boundary conditions
(11). This requires setting up a grid system for the com-
putational domain between the inner and outer bound-
aries. The first step for this analysis is to prescribe the
boundary points.

The inner boundary is the surface of the bullet rosette.
The shape of a bullet rosette is highly complicated, and
it is not easy to determine the coordinates of the bound-
ary surface. To simplify this problem, we use the suc-
cessive modification of simple shapes (SMOSS) tech-
nique developed by Wang (1997, 1999, 2002) to sim-
ulate the shape of ice crystals. The mathematical ex-
pression specific for this case is given in Wang (1999):

2 b d 2 b dr 5 {a[cos (mu)] 1 g} {a9[sin (nw)] 9 1 g9} 9.
(12)

This equation is expressed in spherical coordinates so
that r is the radial, u the zenithal, and w the azimuthal
coordinates. The parameters a, b, g, d, a9, b9, g9, and
d9 are freely adjustable in order to fit the shape of a
particular rosette. The shape generated by this expres-
sion will have 2mn lobes or branches. For example, a
four-branch combination of bullets can be generated by
the following expression:

4 20 4 20r 5 [1 2 cos(2u) ] [1 2 sin(w) ] , (13)

where m 5 2 and n 5 1 here. The width of the branch
is controlled by b and b9 in (12). Obviously, it is im-
possible that such a simple expression will reproduce
all the intricate structures, but at least it captures the
essential multilobe feature that is characteristic of bullet
rosette crystals.

2) THE OUTER BOUNDARY

Although the inner boundary of the problem is not
spherically symmetric, the outer boundary of the present
problem, if set at infinity, will be a sphere, as the dis-
tribution of any field whose source is finite (such as the
rosette considered here) will become spherically sym-
metric when the distance approaches infinity. However,
in numerical calculations, the distance of the outer
boundary from the origin has to remain finite and hence
the field distribution here may deviate from being truly
spherically symmetric. In the present study, we assume
that this finite outer boundary surface is also spherical.
In order to assess the impact of this assumption on the
accuracy of the results, we performed tests to determine
how sensitive the results are to the outer boundary dis-
tance. It turns out that the results are not very sensitive
to the outer boundary distance as long as it is at least
seven radii away from the center of the crystal. Further
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FIG. 1. The seven simulated bullet rosette ice crystals and their generating equations, surface area (S), volume (V ), and the projected
areas in x, y, and z direction. The areas are in units of a2, and the volume in a3.

discussion on the sensitivity tests will be included in
the next section.

A brief description of the discretization techniques
used for the present study and an example of the grid
structure are given in the appendix.

4. Results and discussion

The capacitances of seven bullets rosette crystals are
calculated using the techniques outlined in the previous
section. These rosettes have 2, 3, 4, 6, 8, 12, and 16
lobes. These rosette cases are chosen because their geo-
metrical symmetries render them easier for mathemat-
ical treatment. The mathematical expressions for the
rosettes and plots of their shapes are shown in Fig. 1.
The rosettes look visually reasonable when compared
with photographs of actual samples. More quantitative
discussions of their geometrical properties are given in

the next section. Due to the limitation of the formulas,
it is sometimes difficult to obtain a completely sym-
metric shape for individual lobes. Thus sometimes the
dimension of a lobe in u direction is substantially dif-
ferent than that in w direction. But the multilobe char-
acteristic of the rosettes is well reproduced. The crystals
generated in this way have the lobes of equal length a.
Also included in Fig. 1 are values of the rosettes’ total
surface areas, volumes, and the cross-sectional areas Sx,
Sy, and Sz projected in the x, y, and z axis, respectively.
As an example, Fig. 2 shows plots of the projected cross-
sectional areas of an eight-lobed rosette.

a. Geometrical properties of the modeled rosettes

It is useful to briefly mention some geometrical prop-
erties of the modeled rosettes. Figure 3 shows the var-
iation of the rosettes’ surface areas and volumes with
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FIG. 2. The projected areas Sx, Sy, and Sz of an eight-lobed bullet
rosette simulated in the study.

FIG. 4. Variation of surface area vs radius of rosettes. Here N
represents the number of lobes of the rosette. The thick curve is for
spheres.

FIG. 3. Variation of the surface area and volume of the simulated
rosettes as a function of number of lobes.

FIG. 5. Variation of volume vs radius of rosettes. Here N represents
the number of lobes of the rosette. The thick curve is for spheres.

the number of lobes. It appears that while both the sur-
face area and volume increase with the number of lobes,
the increasing rates are not uniform that may be due to
the specific set of parameter values used. The solid
curves represent power fit by the following formulas:

0.7727 2A 5 1.5528N a (surface area) and
0.5206 3V 5 0.3257N a (volume). (14)

Higher-order polynomials can fit even closer, but we
feel it is unnecessary.

Figures 4 and 5 show the plots of the surface area
and volume versus the radius as computed from (14)
for all seven-rosette cases. It is seen that the surface
areas of all rosettes, except the 16-lobed ones, are small-
er than that of a sphere of equal radius. On the other
hand, the sphere volume is always greater than the vol-
ume of a rosette regardless of the number of lobes.
Naturally, as the number of rosette lobes increases, the
volume increases also.

Heymsfield and Iaquinta (2000) presented some ob-
servational results of bullet rosettes in cirrus clouds, and
it is useful to compare their geometrical properties with
the simulated models in this study. Since the models
used in this study are dimensionless, the most conve-

nient parameter for comparing the geometrical proper-
ties is the aspect ratio, defined as the width w divided
by the length L of a bullet.

To determine the aspect ratio of the seven rosettes we
used the maximum width of the lobe as the width of
the bullet. The length L is of course equal to a of the
lobe. The aspect ratios of the modeled rosettes, so de-
termined, vary between 0.35 ; 0.6. Those with fewer
lobes are usually associated with larger aspect ratios and
those with more lobes are associated with smaller aspect
ratios, but the relation is not monotonic. This range of
aspect ratios appears to be consistent with the majority
of the bullet rosettes observed by Heymsfield and Ia-
quinta (2000).
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FIG. 6. The computed capacitance of an eight-lobed rosette as a
function of the outer boundary distance.

The volume of a bullet rosette calculated using (14)
is also generally consistent with that calculated using
the empirical formula given by Heymsfield and Iaquinta.
For example, the volume of a five-lobed rosette cal-
culated from (14) will be the same (;0.75 a3) as that
calculated using their Eq. (A10) if the aspect ratio is
taken to be 0.45. It is noted that (14) does not include
the aspect ratio effect, hence the volume calculated by
it will be different from Heymsfield and Iaquinta’s for-
mula if the aspect ratio changes.

Yang et al. (2000) also suggested a few empirical
parameters to characterize the geometrical properties of
nonspherical ice particles including rosettes. Their main
purpose was for the parameterization of scattering and
absorption properties of these particles. One of the pa-
rameters they suggested is the equivalent radius de de-
fined as 1.5 (V/A), where V is the volume and A the
projected area. The four-and six-lobed rosettes modeled
in the present study resemble that described in Yang et
al. (2000) and have de varying with a in a similar man-
ner, but the values are larger for the same maximum
dimension. The differences are smaller when rosettes
are small but become much larger when rosettes reach
millimeter size. More research is needed to understand
the significance of such differences.

b. Capacitances of rosettes

Since both the grid resolution and the distance of
outer boundary may influence the precision of the re-
sults, we performed several sensitivity tests in order to
ensure the accuracy of the computed capacitances. The
first test is on the sensitivity of grid resolution. Several
grids were set up for the solutions of in (8) and ther9y
results compared. If the results are similar (less than
about 5% difference), the one with the least resolution
is adopted as the grid for the calculations to achieve
computational efficiency.

The second test is on the sensitivity of the distance
of the outer boundary. This distance was set at different
values from 2.5 to 15 and the respective capacitance
was computed accordingly. As an example, the com-
puted capacitances of an eight-lobed rosette with dif-
ferent outer boundary distances are shown in Fig. 6. We
see in Fig. 6 that as the distance of the outer boundary
b increases, the capacitance of the rosette decreases and
approaches an asymptotic value. This asymptotic value
should represent the capacitance of an isolated rosette
(i.e., when the outer boundary is set at infinity) and is
the value reported here. As mentioned before, the ca-
pacitance becomes more or less constant for outer
boundary distance greater than ;6 radii.

To determine the capacitance, the numerical solutions
of are fed into Eq. (10) and the integral is computedr9y
numerically. In an exact analytical theory, the results of
integration is independent of the surface chosen because
of the steady-state condition implied in the formulation,
but in numerical calculations these results may be some-

what different due to numerical errors in the solutions
of . In order to ensure accuracy, we performed ther9y
integration in (10) over 10 different surfaces to make
sure that errors are insignificant. It turned out that the
differences are typically less than 5%, thus an averaged
value of all of these results should be representative of
the true value of the capacitance.

The computed capacitances of the rosettes as a func-
tion of the number of lobes are shown in Fig. 7. The
slight scatter in the results is largely due to the shape
parameters chosen in Eq. (12). However, the general
trend of the curve is fairly clear and the scatter should
not influence the conclusions to any significant extent.

It is seen in Fig. 7 that the rosette capacitance increases
from about 0.5 to near 0.9 (in unit of a) as the number
of lobes increases from 2 to 16. The capacitance of a
conducting sphere is its radius a. Thus it appears that the
capacitance of a rosette will approach that of a sphere if
the number of lobes approaches infinity, that is, as its
shape approaches a sphere. The following power relation
can fit the rosette capacitance curve in Fig. 7:

0.257C 5 0.434N , (15)

where C is the capacitance in unit of a and N is the
number of lobes.

Figure 7 thus shows that the capacitance of a rosette
is smaller than that of a sphere of equal radius. This
implies that calculations of the rosette growth rate based
on the spherical capacitance assumption overestimate.
The overestimation is the most serious for rosettes with
fewer lobes but becomes less if the number of lobes is
large.

The capacitances of a thin circular plate and two cases
of prolate spheroids are also shown in Fig. 7 for com-
parison. These shapes have been used previously as ap-
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FIG. 7. Computed capacitance (diamonds) of rosettes as a function
of number of lobes. Thick solid curve represent power fit by Eq.
(15). Also shown are the capacitances of a sphere (thin solid line),
a circular plate (dashed), and two prolate spheroids with semiaxis
ratio a/b 5 2 and 5, respectively. The rosettes, the sphere, and circular
plate all have a radius a.

FIG. 8. Variation of capacitance with radius of rosettes calculated
using (15). Here N represents the number of lobes of the rosette. The
thick curve is for spheres.

proximations for ice plates and ice columns and their
capacitance formulas are given as

2a
C 5 (circular plate) and

p

2 2Ïa 2 c
C 5 (prolate spheroid), (16)

ln(2a /c)

where a and c in the second equation represent the sem-
imajor and semiminor axes of the prolate spheroid, re-
spectively (see Pruppacher and Klett 1997, chapter 13,
p. 548). Note that the semilength (the longer dimension)
instead of the radius of the prolate spheroid is denoted
as a. McDonald (1963) and Podzimek (1966) performed
laboratory measurements of the capacitances of metal
models of ice columns, plates, and dendrites, and their
results are close to that given by Eq. (16), usually to
about 10% or less. Only the highly skeleton stellar crys-
tal [P1d in Magono–Lee classification, see Magono and
Lee (1966)] has a capacitance about 23% less than that
given by the plate in (16). Hence the capacitances given
by (16) are fairly representative of the atmospheric ice
crystals.

We will use the capacitance of a prolate spheroid to
approximate that of a hexagonal column in the following
discussion. We see that the capacitance of a two-lobed
rosette crystal is smaller than that of a short column (a
5 2c) (C ; 0.65) but is greater than that of a long thin
column (a 5 5c). A five-lobed rosette has a capacitance
close to that of a short column. This implies that the
growth rate of a rosette ice crystal is usually greater

than that of a long thin column and may even be greater
than a short column if it has more than five lobes.

The capacitance of a circular plate is greater than that
of rosettes of the same radii up to five lobes, but be-
comes smaller than rosette capacitance as the number
of rosette lobes increases. If the rosette has more than
five lobes, its growth rate will be faster than an ice plate
of the same dimension.

Figure 8 shows the plot of capacitance versus radius
for rosettes as computed using (15). The case of spheres
is also given here for comparison.

Since the surface area and volume of a rosette are
important geometrical properties, it is useful to examine
the relations between the capacitance and these two geo-
metrical quantities. Figures 9 and 10 show the variation
of the capacitance with rosette surface area and volume.
The capacitance of the rosettes generally increases with
increasing surface area and volume. The curves repre-
sent the power fits

0.3476C 5 0.3636S (surface area) and
0.4401C 5 0.7472V (volume). (17)

It is of interest to compare the capacitances between
rosettes and spheres of equal areas and volumes. To do
so, we used (14) to calculate the areas and volumes of
the rosettes and (15) to calculate the capacitances for a
given N. Figure 11 shows the comparison for equal
areas. It is seen that rosettes have capacitances larger
than a sphere of equal area if the number of lobes is
smaller than ;6. For a rosette with more than six lobes,
the capacitance becomes smaller than that of a sphere
of equal area, and the more lobes it has, the smaller the
capacitance becomes. One factor that contributes to this
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FIG. 9. Computed rosette capacitance (squares) as a function of rosette
surface area. The solid curve represents power fit by Eq. (17).

FIG. 11. Variation of capacitance with rosette surface area. Here
N represents the number of lobes of the rosette. The thick curve is
for spheres.

FIG. 10. Computed rosette capacitance (squares) as a function of
rosette volume. The solid curve represents power fit by Eq. (17).

FIG. 12. Variation of capacitance with rosette volume. Here N rep-
resents the number of lobes of the rosette. The thick curve is for
spheres.

behavior is the linear dimension of rosettes. A rosette
with few lobes needs to be substantially longer than a
sphere in order to have same area. Such a long rosette
tends to have higher capacitance than the sphere. On
the other hand, a rosette with more lobes need not be
much longer than a sphere to have the same area. Figure
4 shows that, as the number of lobes increases the ro-
settes modeled here, the surface area of a rosette be-
comes closer to that of a sphere of equal radius. A rosette
with 16 lobes even has an area greater than a sphere of
equal radius. Of course, the linear dimension is not the
only factor deciding the capacitance and other factors

should be considered to fully understand the behavior
of the curves in Fig. 11.

The comparison for equal volume is given in Fig. 12,
which shows that the capacitances of rosettes are greater
than a sphere of equal volume in all cases, and the more
the lobes, the greater the capacitance. More studies are
being conducted to understand this phenomenon.

Since equal volume means equal amount of water
content, Fig. 12 implies that, given the same amount of
water substance and holding other environmental con-
ditions constant, a cirrus cloud composed of bullet ro-
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settes will grow more vigorously than one composed of
spheres (e.g., frozen drops). In addition, the more lobes
the rosettes have, the faster they will grow. Such rapid
growth rates would imply greater impact on the cloud
heating of the atmosphere. This is one of the main con-
clusions of LWS’s study and suggests that the impact
of ice habit, especially that of rosettes, on the cirrus
development has to be assessed carefully.

Finally, it is known that rosettes can consist of hollow
bullets, which are not represented by Eq. (12) and whose
capacitances may differ from that given above. More
research is needed to determine the capacitance of such
hollow rosettes.

5. Conclusions

Heymsfield and Platt (1984), Heymsfield and Mc-
Farquhar (1996, 2002), McFarquhar and Heymsfield
(1996), and Heymsfield and Iaquinta (2000) indicated
that ice columns and bullet rosettes dominate the mid-
latitude cirrus, so it is meaningful to compare the ca-
pacitances of these two ice habits. The results presented
above show that those rosettes with five lobes have ca-
pacitances closer to that of ice columns of similar max-
imum dimensions, but those with more lobes would
have capacitances much greater than columns. The ro-
sette capacitances, even those with few lobes, are greater
than long, thin columns. Since the growth rate is directly
proportional to the capacitance, this implies that rosettes
will, in general, grow much faster than columns. On the
other hand, the assumption that a rosette will have ca-
pacitance of a sphere of equal radius would overestimate
the growth rate. The magnitude of overestimation would
depend on the number of lobes of the rosette in question.

Observations suggest that the dominant number of
rosette lobes is either about 3 ; 4 (Kikuchi 1968) or 5
(Heymsfield and Iaquinta 2000; A.J. Heymsfield 2001,
personal communication). In either case, the capacitance
of rosettes will definitely be greater than the columns
(more than 2 times larger than the long thin columns)
but smaller than the spheres of the same maximum di-
mensions. Since the growth rate is directly proportional
to the capacitance, an accurate assessment of the rosette
growth rate in a particular cirrus cloud seems to hinge
upon a good estimate of their mean number of lobes.

The rosette growth rate estimates based on the new
capacitance results will certainly impact on the devel-
opment of cirrus clouds and thence the heating rates of
the atmosphere caused by the presence of cirrus. But
due to the complexity in the interaction between cloud
dynamics and microphysics, we need to use a realistic
cirrus model to assess these impacts.
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APPENDIX

Finite Element Techniques Used for the
Present Study

This appendix provides a brief summary of the dis-
cretization technique used for numerically solving the
Laplace equation for the water vapor density and the
equations that give the Cartesian components of the wa-
ter vapor flux density. The specific discretization tech-
nique we used is the finite element analysis and readers
are referred to standard textbooks for a general discus-
sion (see, e.g., Fletcher 1984). Since the discussions of
finite element methods in most textbooks are confined
to two-dimensional cases whereas the present applica-
tion is three-dimensional, we feel it is useful to provide
some details.

The finite elements chosen for the present study were
tetrahedrons. We used quadratic functions for the water
vapor density and linear functions for the flux density
components for interpolation purpose. This combination
of interpolation functions ensures a continuous water
vapor flux density profile. The water vapor flux density
continuity allows small numerical errors in the capac-
itance using a reasonable discretization of the analysis
domain.

The water vapor density approximation on a tetra-
hedron is given by

10

r̂ 5 N r , (A1)Oy i y i
i51

where Nis are the quadratic interpolation functions
(Dawe 1987) and ryi are the values of the water vapor
density at the vertices and midpoints of edges of the
tetrahedron.

Since y is an approximation of the exact solution, itr̂
does not satisfy the Laplace equation and hence we have
a residual R(x, y, z, Ni):

2 2 2] r̂ ] r̂ ] r̂y y y1 1 5 R(x, y, z, N ). (A2)i2 2 2]x ]y ]z

The application of the weighted residual method
(Fletcher 1984) to minimize the residual term leads to
the following elemental algebraic equation:

eA r̂ 5 0,y (A3)

with the components of the Ae matrix being

]N ]N ]N ]N ]N ]Ni j i j i jeA 5 1 1 r̂ dV, (A4)i j E y j1 2]x ]x ]y ]y ]z ]zVe

where the integral is calculated over the volume of the
finite element.

The elemental equations are assembled over the
whole analysis domain in accordance with the topology
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FIG. A1. The discretization into finite elements of the analysis
domain for an eight-lobed bullet rosette ice crystal. The length of a
lobe is a and the radius of the outer sphere is b 5 5 3 a.

of the discretization. This forms an algebraic system of
equations whose solutions are the values of the water
vapor density at the nodes of the discretization.

The approximate value of the x component of water
vapor flux density in polynomial form is given by

4

ĵ 5 L j , (A5)Ox i xi
i51

where Lis are the linear interpolation functions given in
Dawe (1987) and jxis are the values of the x component
of vapor density flux in the tetrahedron vertices.

Using the approximate value of the water vapor den-
sity y , the x component of vapor flux density can ber̂
written as

1 ]r̂yĵ 5 2 . (A6)x D ]x

Using the weighted residual method described pre-
viously, we obtain the elemental equations for the x
component of vapor flux density

e eeB ĵ 5 2 f ,x x (A7)

where the components of the matrix Be are

eB 5 L L dV, (A8)i j E i j

Ve

and those of the matrix areefx

10 ]N1 jef 5 L r̂ dV. (A9)Oxi E i y j1 2D ]xj51Ve

Assembling the elemental equations (A7) over the
whole domain, we again obtain a system of algebraic

equations whose solutions are the x component values
of vapor flux density at the nodes of the discretization.
The y and z components of vapor flux density are ob-
tained in a similar fashion.

In the initial formulation as described in section 2,
the inner boundary of the domain is the rosette surface
and the outer boundary is a sphere with radius b, cen-
tered at the center of the crystal. In actual calculations
we only need to use a portion of this domain because
of the symmetry of the rosettes. However, this results
in new boundary surfaces when we cut the original do-
main into separate portions (see Fig. A1). It is therefore
necessary to specify the conditions in these new sur-
faces. Here we use the requirement that the normal de-
rivative of the water vapor density be zero as the bound-
ary conditions.

REFERENCES

Dawe, D. J., 1987: Curved beam and arch elements. Finite Element
Handbook, H. Kardestuncer, Ed., McGraw-Hill, 2.128–2.129.

Fletcher, C. A. J., 1984: Computational Galerkin Methods. Springer,
300 pp.

Heymsfield, A. J., 1975: Cirrus uncinus generating cells and the evo-
lution of cirroform clouds. III. J. Atmos. Sci., 32, 799–808.

——, and C. M. R. Platt, 1984: A parameterization of the particle
size spectrum of ice clouds in terms of the ambient temperature
and ice water content. J. Atmos. Sci., 41, 846–855.

——, and G. M. McFarquhar, 1996: High albedos of cirrus in the
tropical Pacific warm pool: Microphysical interpretations from
CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci.,
53, 2424–2451.

——, and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J.
Atmos. Sci., 57, 914–936.

——, and G. M. McFarquhar, 2002: Mid-latitude and tropical cirrus
microphysical properties. Cirrus. D. Lynch, Ed., Oxford Uni-
versity Press, 288 pp.

Hobbs, P. V., 1976: Ice Physics. Oxford University Press, 837 pp.
Ji, W., and P. K. Wang, 1999: Ventilation coefficients of falling ice

crystals at low–intermediate Reynolds numbers. J. Atmos. Sci.,
56, 829–836.

Kikuchi, K., 1968: On snow crystals of bullet type. J. Meteor. Soc.
Japan, 46, 128–132.

Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere.
Oxford University Press, 487 pp.

Liu, H. C., 1999: A numerical study of cirrus clouds. Ph.D. thesis,
Dept. of Atmospheric and Oceanic Sciences, University of Wis-
consin—Madison, 257 pp.

——, P. K. Wang, and R. E. Schlesinger, 2003a: A numerical study
of cirrus clouds. Part I: Model description. J. Atmos. Sci., in
press.

——, ——, and ——, 2003b: A numerical study of cirrus clouds.
Part II: Effects of ambient temperature, stability, radiation, ice
microphysics and microdynamics on cirrus evolution. J. Atmos.
Sci., in press.

Magono, C., and C. W. Lee, 1966: Meteorological classification of
natural snow crystals. J. Fac. Sci. Hokkaido University, Ser. VII,
2, 321–335.

McDonald, J. E., 1963: Use of electrostatic analogy in studies of ice
crystal growth. Z. Angew. Math. Phys., 14, 610.

McFarquhar, G. M., and A. Heymsfield, 1996: Microphysical char-
acteristics of three anvils sampled during the Central Equatorial
Pacific Experiment. J. Atmos. Sci., 53, 2401–2423.

Parungo, F., 1995: Ice crystals in high clouds and contrails. Atmos.
Res., 38, 249–262.



846 VOLUME 60J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

Podzimek, J., 1966: Experimental determination of the ‘‘capacity’’
of ice crystals. Studia Geophys. Geodet., 10, 235–238.

Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and
Precipitation. Kluwer Academic, 954 pp.

Ramanathan, V., E. J. Pitcher, R. C. Malone, and M. L. Blackmon,
1983: The response of a spectral general circulation model
to refinements in radiative processes. J. Atmos. Sci., 40, 605–
630.

Smythe, W. R., 1956: Charged right circular cylinders. J. Appl. Phys.,
27, 917–920.

——, 1962: Charged right circular cylinders. J. Appl. Phys., 33, 2966–
2967.

Wang, P. K., 1997: Characterization of ice particles in clouds by

simple mathematical expressions based on successive modifi-
cation of simple shapes. J. Atmos. Sci., 54, 2035–2041.

——, 1999: Three-dimensional representations of hexagonal ice crys-
tals and hail particles of elliptical cross sections. J. Atmos. Sci.,
56, 1089–1093.

——, 2002: Ice Microdynamics. Academic Press, 273 pp.
——, C. H. Chuang, and N. L. Miller, 1985: Electrostatic, thermal

and vapor density fields surrounding stationary columnar ice
crystals. J. Atmos. Sci., 42, 2371–2379.

Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameteri-
zation of the scattering and absorption properties of individual
ice crystals. J. Geophys. Res., 105, 4699–4718.

Young, K. C., 1993: Microphysical Processes in Clouds. Oxford Uni-
versity Press, 427 pp.


