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The collection of charged aerosol particles by a charged conducting sphere in a uniform electric 
field is theoretically investigated. Continuum regime is considered and particle concentration is as- 
sumed to be described by the convective diffusion equation. Analytical solutions satisfying boundary 
conditions for different regions are obtained. These solutions include the simultaneous effects of 
Brownian motion, static charges, and external electric field. Some numerical results are presented. 
It is also shown that these solutions can be reduced to various limiting cases where some effects are 
absent. 

INTRODUCTION 

The collision and coagulation process of 
aerosol particles has long been an important 
problem in colloidal science. It has applica- 
tions in both atmospheric sciences and en- 
gineering. In the atmosphere, for example, 
the collection mechanism plays an important 
role in the scavenging of aerosol particles. 
This mechanism has recently received con- 
siderable attention (l-lo). In problems of 
chemical engineering particle coagulation is 
of importance as it determines to a consid- 
erable extent the size distribution and thus 
the reaction rate of the reactants. 

In this paper we want to investigate the 
collection process of aerosol particles by a 
spherical collector in the continuum regime. 
The concentration of particles is assumed to 
be described by the convective diffusion 
equation since the particles involved move 
by Brownian diffusion while simultaneously 
under the influence of convective forces such 
as gravity, hydrodynamic forces, and possi- 
bly phoretic and electric forces. In this study 
we shall consider the case where the external 
forces involved are electric forces. 
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PHYSICS AND MATHEMATICS 

1. The convective d$ikon of aerosol par- 
ticles around an absorbing sphere in conser- 
vative force fields. In this section we will 
briefly describe the general formulation of 
the convective diffusion of small particles in 
the presence of conservative force fields 
which will be used later. Consider a cloud of 
monodispersed aerosol particles around a 
perfect absorbing sphere under the influence 
of a net conservative force field F. Then by 
the definition of conservativeness, 

VXF=O [II 
or 

F = -VV, PI 
i.e., it is possible, in this case, to find a scalar 
potential function V whose gradient will give 
the force. 

We further assume that this potential func- 
tion satisfies the Laplace equation, i.e., 

v2v = 0. [31 
Equation [3] is satisfied by many force fields 
such as those involved in the irrotational flow 
of a perfect fluid, surface waves, electromag- 
netic phenomena, and gravitation. 
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If we assume steady-state condition, then 
the convective diffision equation for parti- 
cles exposed the above force field is (12) 

DV2n-BF.Vn=O, [41 

where n is the concentration, D the diffusiv- 
ity, and B the mobility of the particles, re- 
spectively. According to Eq. [2], Eq. [4] can 
be rewritten as: 

v2n+~vv.vn=0. 

The general solution of Eq. [5] is 

153 

Fl 

where C1 and C, are arbitrary constants to 
be fixed by boundary conditions. One simply 
has to substitute Eq. [6] into Eq. [5] to see 
that it is indeed a solution of Eq. [5]. By 
suitable transformation of Eqs. [5] and [6], 
one can obtain other related equations and 
their solutions (see Appendix A). 

Note that the above derivations were car- 
ried out by vector operations. Thus they are 
valid not only for spherical coordinates but 
for other coordinates as well. In fact, the ap- 
plications of Eqs. [5] and [6] had been made 
by (13) for cylindrical coordinates and by 
(14) for oblate spherical coordinates. Note 
also that the force fields which satisfy the 
above derivations need not to be radially 
symmetrical. 

2. Distribution of aerosol particles around 
a spherical conductor under the influence of 
Brownian motions, electric charges, and a 
uniform electric field. We now consider the 
specific case where a conducting sphere of 
radius cy is surrounded by a cloud of mono- 
dispersed aerosol particles with radius r,, (see 
Fig. 1). Electric charges on the sphere and 
the particles are & and q, respectively. We 
will assume g > 0, Q < 0 for the convenience 
of discussion although the solution we shall 
derive is valid for general cases. The Cou- 
lomb force due to the static charges is thus 
attractive. This force is in the radial direc- 
tion i: 
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FIG. 1. Configuration of the problem. 
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where we have neglected the image force (see 
Appendix B for justification). In addition, 
when an external electric field E0 is present 
each particle will feel an additional force 

FE = & WI 

where E is the actual electric field due to the 
perturbation of the sphere. In writing Eq. [S 1, 
we have assumed that (i) electrically the aero- 
sol particles behave like point charges, and 
(ii) the electric field caused by the space 
charges nq is negligible. These assumptions 
are justified if the particles are small com- 
pared to the collector sphere and if the 
charges residing on aerosol particles are 
small. The total external force acting on an 
aerosol particle is 

F = FE + F, = qE + e4 u^ 
r2 ’ 

[9] 

where 
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It is easy to verify that V X F = 0 which says 
that the force is conservative. Thus we can 
write 

F = -VK 1111 
It is also simple to verify that 

v2v= 0 [121 
in spherical coordinates. 

The concentration n of the aerosol parti- 
cles satisfies the steady-state convective dif- 
fusion equation 

DV2n + BVV. On = 0 [I31 

which is identical with Eq. [ 51. Thus the gen- 
eral solution is given by [6], i.e., 

[I41 

The potential V is 

v= -[qEo(r-~)coso-~] [I51 

(see, e.g. (15)). Therefore, 

xco+@ +C2. [16] 
Y 

In order to determine Cr and C2, we have 
to impose the boundary conditions. The con- 
ventional boundary conditions are (see, e.g. 
(1’3) 

i 
n=O at r=u 

[I71 n = n, at y-00. 

While this set of boundary conditions con- 
tinues to be valid in general, it is inadequate 
in determining C, and C2 uniquely. Some 
additional conditions are necessary. To find 
these additional boundary conditions we 
have to examine the distribution of the force 
potential, i.e., Eq. [ 151. This is shown in Fig. 
2. We see here that: (i) when cos 0 < 0, the 
potential increases with Y and the electric 
force is attractive everywhere; (ii) when 
cos 8 > 0, the potential increases with Y ini- 
tially (Region-I), reaches a maximum at Y 
= r,, and then decreases with Y again (Re- 
gion-11). Clearly, the electric force is attrac- 

tive in Region-I, repulsive in Region-II, and 
zero at r = r, . Note that r, is not a constant 
but depends on 0 as well as the relative mag- 
nitudes of the two competing electric fields, 
namely, the Coulomb field and the dipole 
field. The value of r, is determined by the 
following equation: 

or 

E() 

2a3 Q f-k+-=-- 
rm Eo cos 0 ’ 

[I81 

[191 

and the solution is 

r, = 2 ’ I&I v 3Eo cos 6’ 

x COS {; cos-’ [-a3(3E;@;s ,)“‘I} . 

WI 
A plot of r, verus 0 is shown in Fig. 3 for 
several selected values of X = lQl/(&a2 
X cos 0). It is evident from Fig. 3 that Region- 
I cannot cover the whole hemisphere when 
X < 3. This criterion can also be derived from 
Eq. [ 191 by requiring that Y > a. In the ex- 
treme case when E,, - co, r, will not exist 
and the potential maximum will not occur 
outside the hemisphere. 

We will now examine the solutions in two 
regions: 

(i) When cos fl < 0. 

The boundary conditions are Eq. [ 171: 
n=O at r=a 

n = n, at r-cc 

and therefore 

c, x n, 

E - exp 

C 2= 
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where zero everywhere in this region except when 

&I cos 0 is itself infinitely close to zero. In the 
6 = exp - - D 4,) = exp(-co) -+ 0 WI latter case e is close to one. Thus C, and C, 

given above are not strictly constants but 
is a very small number, infinitely close to very nearly so. The solution is 

exp{$[&(r--$)cosB-y]}-exp(-$$) 
nxn co [241 

‘- exp 

(ii) When cos 13 >, 0, I < r, 

When cos 0 >, 0, the conditions [ 171 do not 
determine C, and CZ uniquely, and addi- 
tional conditions are necessary. For this pur- 
pose, we note that the concentration gradient 
is given by taking the radial derivative of Eq. 
[16]: 

$= C1~[Eoq(l +$gcoss+g 
Xexp{g[q&(r--$)cosR-T]}. 1261 

I”““““““1 
E -0.85 

1 -1 

0 - 1 / REGION-I / REGION-II 1 

1.0 14 1.8 2.2 
RADIAL DISTANCE (rl 

FIG. 2. The electric potential $ as a function of the 
radial distance r for the case a = 1, Q = - 1, l&l = 0.2, 
and 0 = 0. 

$)cos*+(~-$I}). P51 

At cos 0 = 0, the radial component of the 
external field is zero and we would expect 
that the radial concentration gradient would 
be the same as the case when the external 
field is absent. The expression of &z/aR for 
the latter case can be found in (8). Thus, 

dn 
dy I coss=o = Cl ;[F]exP(-$$) 

and therefore 

c, = no0 1281 
1 - exp 

The other boundary condition is iz = 0 at r 
= a, i.e., 

0 = Cl exp 

and therefore 

c, = - [291 

The complete solution is therefore 
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n=n m [301 

At r = r, the radial components of the external field for all 8 vanish, and we would expect 
that an@- = 0 at Y = r, for all 8. But this requirement is automatically satisfied in view of 
Eq. [26] since the quantity in the first square brackets vanishes at r = r,. 

Equation [30] can be written as 

exp(-z)-exp{$[E,q(r-$)cos*-$11 
n = n, [311 

exp 
( 

-BQ4\ - 1 

Dal L 

Both the numerator and denominator on the 
right hand side of Eq. [3 11 are now positive. 
It is easy to see that the concentration is not 
uniform at r = r, (remember that r,,, is a 
function of 0). The concentration y1,, is 
largest at cos 0 = 0 since the potential is zero 
at r = r,. On the other hand, the smallest 
n,=, occurs at 0 = 0 since the potential max- 
imum is lowest and therefore the negative of 
the potential maximum is largest (see Fig. 2). 

Even at a constant r near the sphere, the 

0” 

FIG. 3. The surfaces of r = r, calculated from Eq. 
[20] for different values of h. Note that these surfaces 
are not equipotential surfaces. 

concentration n is also smallest along 0 = 0, 
as can be seen from Eq. [3 11. This is consis- 
tent with the physical consideration because 
this is where the particles meet the strongest 
repulsive forces. 

From Eq. [3 I] we can also see that when 
EO increases to an extent that the second term 
in the numerator equals the first term, the 
concentration becomes zero. Further in- 
crease in EO would cause the concentration 
to become negative. The negative value itself 
is unimportant; it simply means that under 
very strong external field, particles cannot 
come close to the hemisphere because of the 
very strong repulsive forces. This is also con- 
sistent with physical reasonings. 

The solution for the region where cos f3 
> 0 and r > r, is not obtained yet. On the 
other hand it should not concern us here 
because the particle flux in this region is ba- 
sically drifting along the field lines and is 
directed away from the sphere. Thus, insofar 
as the collection of aerosol particles by the 
sphere is concerned, we can ignore this re- 
gion. 

3. The calculation of collection kernel. To 
calculate the collection kernel, we need to 
know the radial concentration gradients at 
the surface of the sphere. Thus by taking the 
radial derivatives of Eqs. [25] and [31] and 
set r = a, we obtain. 
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and 

dn 
B 

i% I=a = -&D ‘33s &co 3E,,q cos 0 + $ 1 

; 3Eoq cos 6’ + % 1 = --y1 cc 
1 - exp 

~321 

[331 

The collection kernel is 

f 
DUn.dA= K, + K2 

i-=Zi 

ss 2r ~,2 
B 

3Eoq 
cos 0 + 

9 1 zz 0 0 1 - exp 
a2sinBdBd4 +~~2B[3EoqcosB+~]a2sinOdOd~ 

= -(3nEoa2Bq + 2rBQq) 
+ (3aEoa2Bq - 2nBQq). [34] - 

1 - exp 

The two terms in Eq. [34] should be evaluated separately before adding together. Negative 
values of K, or K2 should be regarded as zero since it simply means that no particle is 
collected. 

The above derivation is based on the assumption that the surface r = r, extends outside 
the sphere. In the case when X < 3, this surface does not cover the whole hemisphere but 
covers only from 0 = 0, to 0 = n/2 (see Fig. 3). In this case, the lower limit of the inner 
integral in K, is not 0 but should be replaced by 13,. The resulted collection kernel is 

- i rEoa2Bq(l + cos 28,) + 2aBQq cos & 1 
K= + (3xEoa2Bq - 2rBQq), [351 

1 - exp 

where 

[361 

The above formulation is valid for stationary collectors. For collections moving in a 
viscous medium the hydrodynamic forces should be considered. The calculations which 
include hydrodynamic forces are, however, quite involved. Examples of this type of cal- 
culations were given in (6) where the Brownian motion was not considered. Alternatively 
an approximated method which takes the hydrodynamic effects into account was given by 
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( 10). There a ventilation factor was used to represent the overall enhancement of the particle 
flux. Thus according to this approximation the collection kernel is given by 

for X > 3 and 

- i rEoa2Bq(l + cos 20,) + 2?rBQq cos & 1 
K= + (3*Eoa2Bq - 2aBQq) [381 

1 - exp 

for X < 3. The previous paper ( 10) must be consulted for the formulas of various ventilation 
factors. 

RESULTS AND DISCUSSIONS 

Equations [34]-[38] were used to calculate 
the collection kernels of aerosol particles of 
radii 0.00 1 to 1 .O pm by spheres of 10 to 400 
pm in the presence of external electric fields 
of strength 100 to 3000 V/cm. All compu- 
tations were carried out for 900 mbar and 
10°C. The spheres and particles were as- 
sumed to carry electric charges of 

Q = 2a2 esu 
q = 2ri esu, [391 

respectively, with a and r, in centimeters. 
This size dependence of electric charges is 
that proposed in (17) for the mean thunder- 
storm charges. Note that for particles of radii 
smaller than about 0.15 pm the above for- 
mulas give values of charges smaller than one 
electron (-4.8 X 10-l’ esu). The values thus 
represent only the average charges of a cloud 
of mixed charged and neutral particles. Since 
the charges of small particles are usually very 
small, we assume here that, for the case when 
q is smaller than one electron, the aerosol 
cloud is composed of particles carrying either 
one electron charge or no charge. The frac- 
tion of charged particles is therefore given by 

R, = 
2rz 

4.8 X 10-l’ [401 

whereas the fraction of neutral particles is 
given by 

Rg= 1 -R,. [411 

The neutral particles are assumed to be un- 
affected by the electric forces and thus per- 
form pure Brownian motions with the col- 
lection kernel 

KB = 4?rDa. 

The total kernel is therefore 

1421 

K=R,K,+(l -R,)KB, [431 

where Kg is the collection kernel of charged 
particles given by one of the Eqs. [34]-[38]. 

Figures 4 to 8 show the collection kernels 
of aerosol particles by stationary spheres of 
various sizes in the presence of electric fields 
of 100, 500, 1000, 2000, and 3000 V/cm, 
respectively. Figures 9 to 13 show the collec- 
tion kernels of the same set of particle and 
sphere sizes, except that now the ventilation 
effect is considered. The two sets of figures 
look similar to each other except in the mag- 
nitudes. The general feature is that the kernel 
decreases with aerosol size initially, reaches 
a minimum in the size range between 0.01 
and 0.1 pm, and then increases with particle 
size. This general feature can be understood 
in terms of the relative importance of the 
Brownian motion and the electric effect. For 
very small particles the Brownian motion is 
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1o .OOl 2. 5. .Ol- 2. 5. .l 2. 5. 
I - ““I 1llll ““I ’ I’I’, IIll, ““I ’ 1’1’1 IBIB ‘lo 

1 - - 1 

lo-‘- - 10-I 

10-z- 

10-T- - 10-7 

10-a- -10-8 

‘“-“.001 2. I , I,I*I 5. I1111 .Ol ,,,.I 2. . I .,,, 5. I,,,, .l .*,, 2. I , ,,,,I 5. ,I,, 1 Jo-9 

RRDIUS OF PARTICLE (MICRONS1 

FIG. 4. Collection kernels of aerosol particles captured by spheres of various sizes due to Brownian 
diffusion and electric forces in air of 900 mbar and 10°C and external electric field E,, = 100 V/cm. (I) 
a = 10 pm, (2) a = 30 pm, (3) a = 50 pm, (4) a = 70 km, (5) a = 100 pm. No ventilation effect. 
Q= 2a2 esu, q = 2rz esu, a and r, in centimeters. 

dominant, the effect being larger for smaller 
particles, thus the kernel decreases when size 
increases. On the other hand, the electric ef- 
fect is dominant for large particle sizes, the 
effect being larger for larger particles due to 
the larger charges. Thus the kernel increases 
with size at this end In the middle neither 
the Brownian motion nor the electric effect 
is strong, the kernel is therefore a minimum 
here. A more detailed discussion is given 
in (10). 

Figures 14 and 15 compare the collec- 
tion kernels of aerosol particles captured by 
spheres of radii 30 and 100 pm for the cases 
with and without ventilation effect. Clearly 
the ventilation effect is stronger for smaller 
aerosol particles while the larger particles 
(Y > 0.1 pm) are hardly affected. This can be 
realized in terms of the larger inertia of the 
particles. In addition the ventilation effect is 

stronger for the larger collector (a = 100 pm) 
because of larger hydrodynamic forces. 

Figure 16 compares the kernels obtained 
by the present formulation and that of (10) 
for collectors of radii 30 and 106 pm in the 
electric field E0 = 3000 V/cm. As can be seen 
here the differences between the two are not 
very large, being about lo-20% in most cases. 
The present formulation gives a lower value 
than that in (10). This is to be expected since 
the formulation in (10) simply adds the flux 
due to Brownian diffusion to that due to 
electric effect, thus implicitly assuming that 
the Brownian diffusion is not affected by the 
electric field. This is of course less accurate. 
The present formulation, on the other hand, 
considers the reduction of the Brownian flux 
in the presence of the electric field and is 
therefore more physically realistic. The small 
difference between the two, however, does 
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FIG. 5. Same as Fig. 4 except for E. = 500 V/cm. 

r 

RRDIUS OF PRRTICLE IMICRONSI 

FIG. 6. Same as Fig. 4 except for E. = 1000 V/cm. 
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FIG. 7. Same as Fig. 4 except for E. = 2000 V/cm. 

1 - - 1 

lo-‘- - 10-l 

lo-*- 

10-6- ----- - 10-S 

10-T- - 10-7 

10-e- - 10-a 

10-g ~~~~’ “*‘,““” ,*s*’ “*‘,““” *,a,’ ’ I~(~““’ .OOl 2. 5. .Ol 2. 5. .l 2. 5. i!O-’ 

RRDIUS OF PARTICLE (MICRONS) 

FIG. 8. Same as Fig. 4 except for E0 = 3000 V/cm. 
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x lj& ,,,( , ,,,, , ,,/, , ,,, , , ,,,, , ,/,, I ,,,, (,,,, , ,,~;I: 2. 5. .Ol 2. 5. .I 2. 5. 

RRDIUS OF PRRTICLE [MICRONSI 

FIG. 9. Collection kernels of aerosol particles captured by spheres of various sizes due to Brown- 
ian diffusion and electric forces in air of 900 mbar and 10°C and external electric field Ea = 100 V/cm. 
(1) a = 10 pm, (2) a = 30 pm, (3) a = 50 pm, (4) a = 70 pm, (5) a = 100 pm, (6) a = 200 pm, 
(7) a = 300 pm, (8) a = 400 pm. Ventilation effects are included. Q = 2a2 esu, q = 2rz esu, a and ri, 
in centimeters. 

testify an old empirical rule that the sum of 
the pure Brownian flux and pure conduction 
current represents a good approximation for 
the total flux in many cases. 

a. Limiting Cases 

We shall now show that in various limiting 
cases the solutions in Sections 2 and 3 can 
be reduced and can represent the proper so- 
lutions for these limits. 

(i) When there is no external field (EO 
= 0). In this case, t = 1 in Eq. [23] instead 
of zero, and Eq. [24] becomes exactly 

[441 

while Eq. [30] also reduces exactly to this 
result. This is identical with the solution ob- 
tained by (8) where the particle distribution 
is determined only by the Brownian diffusion 
and central forces such as that caused by 
static charges. 

(ii) Pure Brownian dljiision. When both 
electric forces due to the external field and 
the electric charges are absent, then the par- 
ticle distribution is solely determined by the 
Brownian diffusion. We can obtain this from 
the above solutions. 

Since there is no external electric field, the 
starting equation will be the same as Eq. [44]. 
We then take the limit of Eq. [44] when Q 
and q are infinitely approaching zero. Thus, 
by expanding the exponential functions in 
[44] into power series we obtain 
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FIG. 10. Same as Fig. 9 except for E0 = 500 V/cm. 

10 
.OOl 2. 5. .Ol 2. 5. .l 2. 

I 

10-l 1 

1 o-2 1 

10-3 1 

.\ r////g..-- 
10-4 1 

0 
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FIG. 11. Same as Fig. 9 except for I& = 1000 V/cm. 
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FIG. 12. Same as Fig. 9 except for & = 2000 V/cm. 
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FIG. 13. Same as Fig. 9 except for ECJ = 3000 V/cm. 
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RROIUS OF PRRTICLE IMICRONSI 

FIG. 14. Comparison between the collection kernels of aerosol particles captured by spheres of radius 
a = 30 pm with (-) and without (- - -) ventilation effects. Curves (l)-(5) are for cases without 
ventilation effects and E. = 100, 500, 1000, 2000, and 3000 V/cm, respectively. Curves (6)-( 10) are for 
cases with ventilation effects and E0 = 100, 500, 1000, 2000, and 3000 V/cm. 

= lim n, 
,.,(-g-,.,(-g) 

Leo Q-0 
q--‘o 930 1 - exp 

= lim n, 

1 

Da 
- 

e-0 
PO 

BQq 1 --- 
Da 2! 

(neglect higher order terms) 

1451 
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RROIUS OF PRRTICLE [MICRONSI 

FIG. 15. Same as Fig. 14 except for a = 100 Grn. 

Equation [45] is the well-known particle 
distribution around a sphere due to pure 
Brownian motions (see, e.g. (8)). 

(iii) Very strong external electric field. 
When the external field is so strong as to 
predominate the whole process, the particle 
distribution is solely determined by the ex- 
ternal field. The total mass flux toward the 
sphere is the convective current due to the 
external field. This can be easily obtained by 
taking Eoa2 S @I in Eq. [35]. Since & 
- ?r/2 in this case, we have 

K x 3?rEoa2Bq 1461 

since the first term is a negative number and 
should be set to zero. Equation [46] is the 
well-known convective current due to a uni- 
form external field E0 (see, e.g. (1 S), for the 
case of ion transport toward a spherical drop 
due to Eo). 

CONCLUSIONS 

In the above discussions we have shown 
that the distribution of aerosol particles by 
a stationary, conducting sphere in the pres- 
ence of an external electric field can be de- 
scribed by the convective diffusion Eq. [13] 
with solution Eqs. [25] and [3 11. The particle 
flux is given by Eqs. [34]-[38]. We have also 
proved that in the limiting cases (i) E,, = 0, 
(ii) pure Brownian diffusion, and (iii) very 
strong E,, the above solutions can be reduced 
to proper solutions for these cases. 

Although the present paper deals exclu- 
sively with the electrostatic forces, the for- 
mulation is quite general and is valid for any 
conservative force fields whose potentials sat- 
isfy the Laplace equation. Thus one can eas- 
ily add forces such as thermo- and diffusio- 
phoretic forces. 

We want to stress, however, that we have 
not included the hydrodynamic forces which 
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FIG. 16. Comparison between the collection kernels calculated from the present formulation and from 
Ref. (10). Solid curves are the present results. Dashed curves are results from Ref. (10). & = 3000 V/cm 
for all cases. Only Brownian diffusion and electric forces are considered, but with ventilation effect. 

are more complicated. Thus the results ob- 
tained above should not be compared di- 
rectly with the experimental results which 
were obtained in the presence of hydrody- 
namic forces. We are currently working to- 
ward this direction. The present paper, in the 
mean time, should represent a step forward 
in solving the convective diffusion problem 
in a nonsymmetric force field. 

APPENDIX A 

In the following we will provide some con- 
venient formulas for obtaining particular so- 
lutions of convective diffusion processes un- 
der the influence of conservative force fields. 
To our knowledge these formula have not 
been brought to the attention of many in- 
vestigators. 

Consider a vector field F which is conser- 
vative and satisfies Eqs. [ 1 ]-[ 31. Let $ be any 

continuous function which is at least twice 
differentiable. Then 

(i) the equation 

V*$+FVIC/=O c471 

has a solution 

1c/ = C,e” + C,, 

(ii) the equation 

V*$-F-V+=0 

has a solution 

[481 

[491 

I) = C,e-’ + C,, WI 

(iii) the equation 

V*ic, + F*$ = 0 1511 

has the solution 

$ = Cle’” + C2e-I* (2 = -I), [52] 
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and (iv) the equation 

V2t,b - F2$ = 0 [531 

has a solution 

I) = C,e” + C2eev, [541 

where F2 = F. F = Vv . Vv, v is the potential 
of F, defined in Eq. [2]. These can be verified 
by simply substituting the solutions into the 
corresponding equations. Equations [47] and 
[49] are generally regarded as the diffusion 
equations while Eqs. [5 I] and [53] are the 
Helmholtz equations. 

Equation [ 5 31 is also mathematically iden- 
tical with the time-independent SchrGdinger 
equation. 

It is interesting to note that Eqs. [47], [49], 
and [53] are mutually transformable. If we 
let $ = $’ exp(v/2) and substitute into Eq. 
[47] we will obtain 

v2gv - $ (Vv - Vv)$’ = 0 

or 

V2$’ - (Vu’ - Vv’)l+v = 0 
( 1 
v’ = 11 

2 
or 

V2$’ - F’2$’ = 0 (F’ = -0~‘) [55] 

which is identical with Eq. [53]. On the other 
hand if we substitute + = $’ exp(-v/2) into 
Eq. [49], we will again obtain Eq. [55]. This 
type of transformation has been introduced 
by Ftirth (193 1) (cited in Eq. [ 121 for one- 
dimensional case). In the above we see that 
one can perform the transformation in a 
more general three-dimensional form if the 
vector F satisfies Eqs. [ l]-[3]. 

When using the above formula one has to 
be sure that F does indeed satisfy Eqs. [l]- 
[3] and that the form of the equation is in- 
deed the same as those listed in Eqs. [47], 
[49], [51], and [53]. When these require- 
ments are met, the remaining work is to find 
the potential function v for F. This last step 
can be found in many standard textbooks of 
mathematical physics. 

APPENDIX B 

The complete electric force between a 
point charge and a charged conducting sphere 
is (see, e.g. (15) or (19)) 

IFI = 5 [Q - “$’ aipl?)] , [56] 

where the second term in the brackets rep- 
resents the image force. Since the aerosol 
particles are not really point charges but of 
finite sizes, they will be captured by the col- 
lector at a distance r = a + r,. At this distance 
the electric force is 

IFI = q 
: 

-!&- 
(a + rJ2 

qa3[a(a + T-,)~ - a”] 
1 - (a + r,)[(a + I-,)~ - a212 J ’ [571 

Since the image force is larger for larger q 
which, in turn, requires a larger particle ra- 
dius in our calculation (q a Y;), we take the 
largest particle (rp = 1 pm) and the smallest 
sphere (a = 10 pm, so that Q is smallest) for 
an estimate of the relative importance of the 
two terms. Putting these values of a and r, 
into Eq. [57] and assuming that Q = 2a2, q 
= 2r$ (a, rp in centimeters), we obtain 

Q 2 x 1o-6 -= 
(a + rp)2 (1.1 X 10-3)2 = 1’65’ 

qa3[2(a + rp)’ - a21 
(a + r,)[(a + rp)2 - a212 

= 2 X lo-’ X lo-’ X 1.42 X 1O-6 
1.1 x 1o-3 x (0.21 x 10-6)2 

= 5.85 X lo-‘. 

Clearly the image force is negligibly small in 
comparison with the first term for aerosol 
particles captured by larger spheres. Thus in 
our calculation we can safely neglect the im- 
age force. 
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